Predicting tumor cell line response to drug pairs with deep learning

被引:0
|
作者
Fangfang Xia
Maulik Shukla
Thomas Brettin
Cristina Garcia-Cardona
Judith Cohn
Jonathan E. Allen
Sergei Maslov
Susan L. Holbeck
James H. Doroshow
Yvonne A. Evrard
Eric A. Stahlberg
Rick L. Stevens
机构
[1] Computing,
[2] Environment and Life Sciences,undefined
[3] Argonne National Laboratory,undefined
[4] Computation Institute,undefined
[5] The University of Chicago,undefined
[6] Center for Nonlinear Studies,undefined
[7] Los Alamos National Laboratory,undefined
[8] Computer Science,undefined
[9] Los Alamos National Laboratory,undefined
[10] Computation Directorate,undefined
[11] Lawrence Livermore National Laboratory,undefined
[12] Department of Bioengineering and Carl R. Woese Institute for Genomic Biology,undefined
[13] University of Illinois at Urbana-Champaign,undefined
[14] Developmental Therapeutics Branch,undefined
[15] National Cancer Institute,undefined
[16] Data Science and Information Technology Program,undefined
[17] Frederick National Laboratory for Cancer Research,undefined
来源
关键词
Machine learning; Deep learning; Combination therapy; in silico drug screening;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] scDR: Predicting Drug Response at Single-Cell Resolution
    Lei, Wanyue
    Yuan, Mengqin
    Long, Min
    Zhang, Tao
    Huang, Yu-e
    Liu, Haizhou
    Jiang, Wei
    GENES, 2023, 14 (02)
  • [42] Deep Graph and Sequence Representation Learning for Drug Response Prediction
    Yan, Xiangfeng
    Liu, Yong
    Zhang, Wei
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT I, 2022, 13529 : 97 - 108
  • [43] Predicting the thermophysical properties of skin tumor based on the surface temperature and deep learning
    Chen, Haolong
    Wang, Kaijie
    Du, Zhibo
    Liu, Weiming
    Liu, Zhanli
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 180
  • [44] Predicting drug-target interaction network using deep learning model
    You, Jiaying
    McLeod, Robert D.
    Hu, Pingzhao
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2019, 80 : 90 - 101
  • [45] BiMPADR: A Deep Learning Framework for Predicting Adverse Drug Reactions in New Drugs
    Li, Shuang
    Zhang, Liuchao
    Wang, Liuying
    Ji, Jianxin
    He, Jia
    Zheng, Xiaohan
    Cao, Lei
    Li, Kang
    MOLECULES, 2024, 29 (08):
  • [46] Predicting cancer drug response using an adapted Deep Neural Network model
    Li, Xiaofan
    Kalofonou, Melpomeni
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [47] oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data
    Maeser, Danielle
    Gruener, Robert F.
    Huang, Rong Stephanie
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [48] Evaluation of categorical response methods in predicting drug responses in transplanted tumor models
    Jiang, X.
    Li, H.
    Guo, S.
    EUROPEAN JOURNAL OF CANCER, 2018, 103 : E102 - E102
  • [49] Predicting drug-drug interactions based on multi-view and multichannel attention deep learning
    Huang, Liyu
    Chen, Qingfeng
    Lan, Wei
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2023, 11 (01)
  • [50] shinyDeepDR: A user-friendly R Shiny app for predicting anti-cancer drug response using deep learning
    Wang, Li-Ju
    Ning, Michael
    Nayak, Tapsya
    Kasper, Michael J.
    Monga, Satdarshan P.
    Haung, Yufei
    Chen, Yidong
    Chen, Yu-Chiao
    PATTERNS, 2024, 5 (02):