Prediction of amyloid β PET positivity using machine learning in patients with suspected cerebral amyloid angiopathy markers

被引:0
|
作者
Young Hee Jung
Hyejoo Lee
Hee Jin Kim
Duk L. Na
Hyun Jeong Han
Hyemin Jang
Sang Won Seo
机构
[1] Hanyang University,Department of Neurology, College of Medicine, Myoungji Hospital
[2] Sungkyunkwan University of School of Medicine,Department of Neurology
[3] Samsung Medical Center,Department of Intelligent Precision Healthcare Convergence
[4] Neuroscience Center,Department of Health Science and Technology
[5] Samsung Medical Center,Stem Cell and Regenerative Medicine Institute
[6] Samsung Alzheimer Research Center,undefined
[7] Research Institute for Future Medicine,undefined
[8] Samsung Medical Center,undefined
[9] Sungkyunkwan University,undefined
[10] SAIHST,undefined
[11] Sungkyunkwan University,undefined
[12] Samsung Medical Center,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Amyloid-β(Aβ) PET positivity in patients with suspected cerebral amyloid angiopathy (CAA) MRI markers is predictive of a worse cognitive trajectory, and it provides insights into the underlying vascular pathology (CAA vs. hypertensive angiopathy) to facilitate prognostic prediction and appropriate treatment decisions. In this study, we applied two interpretable machine learning algorithms, gradient boosting machine (GBM) and random forest (RF), to predict Aβ PET positivity in patients with CAA MRI markers. In the GBM algorithm, the number of lobar cerebral microbleeds (CMBs), deep CMBs, lacunes, CMBs in dentate nuclei, and age were ranked as the most influential to predict Aβ positivity. In the RF algorithm, the absence of diabetes was additionally chosen. Cut-off values of the above variables predictive of Aβ positivity were as follows: (1) the number of lobar CMBs > 16.4(GBM)/14.3(RF), (2) no deep CMBs(GBM/RF), (3) the number of lacunes > 7.4(GBM/RF), (4) age > 74.3(GBM)/64(RF), (5) no CMBs in dentate nucleus(GBM/RF). The classification performances based on the area under the receiver operating characteristic curve were 0.83 in GBM and 0.80 in RF. Our study demonstrates the utility of interpretable machine learning in the clinical setting by quantifying the relative importance and cutoff values of predictive variables for Aβ positivity in patients with suspected CAA markers.
引用
收藏
相关论文
共 50 条
  • [31] Is it safe to anticoagulate patients with cerebral amyloid angiopathy?
    Towfighi, Amytis
    Snider, Ryan
    Schwab, Kristin
    Wendell, Lauren
    Greenberg, Steven M.
    Smith, Eric E.
    Rosand, Jonathan
    STROKE, 2007, 38 (02) : 599 - 599
  • [32] Cerebellar hemorrhages in patients with cerebral amyloid angiopathy
    Gavriliuc, P.
    Molad, J.
    Yaghmour, N.
    Honig, A.
    Gomori, J. M.
    Cohen, J. E.
    Auriel, E.
    Leker, R. R.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2019, 405
  • [33] The neuropsychological profile of patients with cerebral amyloid angiopathy
    Donaldson, E. E.
    McCreary, C. R.
    Charlton, A.
    Kumarpillai, G.
    Shobha, N.
    Poulin, M. J.
    Goodyear, B.
    Frayne, R.
    Smith, E. E.
    STROKE, 2012, 43 (11) : E143 - E143
  • [34] Distinctive Clinical Effects of Haemorrhagic Markers in Cerebral Amyloid Angiopathy
    Jang, Young Kyoung
    Kim, Hee Jin
    Lee, Jin San
    Kim, Yeo Jin
    Kim, Ko Woon
    Kim, Yeshin
    Jang, Hyemin
    Lee, Juyoun
    Lee, Jong Min
    Kim, Seung-Joo
    Yu, Kyung-Ho
    Charidimou, Andreas
    Werring, David J.
    Kim, Sung Tae
    Na, Duk L.
    Seo, Sang Won
    SCIENTIFIC REPORTS, 2017, 7
  • [35] Cerebrospinal Fluid Anti-Amyloid-β Autoantibodies and Amyloid PET in Cerebral Amyloid Angiopathy-Related Inflammation
    Carmona-Iragui, Maria
    Fernandez-Arcos, Ana
    Alcolea, Daniel
    Piazza, Fabrizio
    Morenas-Rodriguez, Estrella
    Anton-Aguirre, Sofia
    Sala, Isabel
    Clarimon, Jordi
    Dols-Icardo, Oriol
    Camacho, Valle
    Sampedro, Frederic
    Munuera, Josep
    Nunez-Marin, Fidel
    Lleo, Alberto
    Fortea, Juan
    Gomez-Anson, Beatriz
    Blesa, Rafael
    JOURNAL OF ALZHEIMERS DISEASE, 2016, 50 (01) : 1 - 7
  • [36] PET imaging for the evaluation of cerebral amyloid angiopathy: a systematic review
    Francesco Dondi
    Mattia Bertoli
    Silvia Lucchini
    Elisabetta Cerudelli
    Domenico Albano
    Francesco Bertagna
    Clinical and Translational Imaging, 2022, 10 : 391 - 401
  • [37] PET imaging for the evaluation of cerebral amyloid angiopathy: a systematic review
    Dondi, Francesco
    Bertoli, Mattia
    Lucchini, Silvia
    Cerudelli, Elisabetta
    Albano, Domenico
    Bertagna, Francesco
    CLINICAL AND TRANSLATIONAL IMAGING, 2022, 10 (04) : 391 - 401
  • [38] Distinctive Clinical Effects of Haemorrhagic Markers in Cerebral Amyloid Angiopathy
    Young Kyoung Jang
    Hee Jin Kim
    Jin San Lee
    Yeo Jin Kim
    Ko Woon Kim
    Yeshin Kim
    Hyemin Jang
    Juyoun Lee
    Jong Min Lee
    Seung-Joo Kim
    Kyung-Ho Yu
    Andreas Charidimou
    David J. Werring
    Sung Tae Kim
    Duk L. Na
    Sang Won Seo
    Scientific Reports, 7
  • [39] Amyloid-PET in sporadic cerebral amyloid angiopathy A diagnostic accuracy meta-analysis
    Charidimou, Andreas
    Farid, Karim
    Baron, Jean-Claude
    NEUROLOGY, 2017, 89 (14) : 1490 - 1498
  • [40] Diagnostic utility of amyloid PET in cerebral amyloid angiopathy-related symptomatic intracerebral hemorrhage
    Baron, Jean-Claude
    Farid, Karim
    Dolan, Eamon
    Turc, Guillaume
    Marrapu, Siva T.
    O'Brien, Eoin
    Aigbirhio, Franklin I.
    Fryer, Tim D.
    Menon, David K.
    Warburton, Elizabeth A.
    Hong, Young T.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2014, 34 (05): : 753 - 758