Weight-and-Universum-based semi-supervised multi-view learning machine

被引:0
|
作者
Changming Zhu
Duoqian Miao
Rigui Zhou
Lai Wei
机构
[1] Shanghai Maritime University,College of Information Engineering
[2] Tongji University,Department of Computer Science and Technology
来源
Soft Computing | 2020年 / 24卷
关键词
Semi-supervised learning; Multi-view learning; View weights; Feature weights; Universum learning;
D O I
暂无
中图分类号
学科分类号
摘要
Semi-supervised multi-view learning machine is developed to process the corresponding semi-supervised multi-view data sets which consist of labeled and unlabeled instances. But in real-world applications, for a multi-view data set, only few instances are labeled with the limitation of manpower and cost. As a result, few prior knowledge which is necessary for the designing of a learning machine is provided. Moreover, in practice, different views and features play diverse discriminant roles while traditional learning machines treat these roles equally and assign the same weight just for convenience. In order to solve these problems, we introduce Universum learning to obtain more prior knowledge and assign different weights for views and features to reflect their diverse discriminant roles. The proposed learning machine is named as weight-and-Universum-based semi-supervised multi-view learning machine (WUSM). In WUSM, we first obtain weights of views and features. Then, we construct Universum set to obtain more prior knowledge on the basis of these weights. Different from traditional construction ways, the used construction way makes full use of the information of all labeled and unlabeled instances rather than only a pair of positive and negative training instances. Finally, we design the machine with the usage of the Universum set along with original data set. Our contributions are given as follows. (1) With the usage of all (labeled, unlabeled) instances of the data set, the Universum set provides more useful prior knowledge. (2) WUSM considers the diversities of views and features. (3) WUSM advances the development of semi-supervised multi-view learning machines. Experiments on bipartite ranking, feature selection, dimensionality reduction, classification, clustering, etc. validate the advantages of WUSM and draw a conclusion that with the introduction of Universum learning, view weights, and feature weights, the performance of a semi-supervised multi-view learning machine is boosted.
引用
收藏
页码:10657 / 10679
页数:22
相关论文
共 50 条
  • [1] Weight-and-Universum-based semi-supervised multi-view learning machine
    Zhu, Changming
    Miao, Duoqian
    Zhou, Rigui
    Wei, Lai
    [J]. SOFT COMPUTING, 2020, 24 (14) : 10657 - 10679
  • [2] View Construction for Multi-view Semi-supervised Learning
    Sun, Shiliang
    Jin, Feng
    Tu, Wenting
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I, 2011, 6675 : 595 - 601
  • [3] Multi-View Semi-Supervised Learning Based Image Annotation
    Sun, Chengjian
    Zhu, Songhao
    Shi, Zhe
    [J]. MODERN TECHNOLOGIES IN MATERIALS, MECHANICS AND INTELLIGENT SYSTEMS, 2014, 1049 : 1486 - 1489
  • [4] Active Semi-Supervised Clustering based on Multi-View Learning
    Zhang, Xue
    Zhao, Dong-yan
    Wei, Shan
    Xiao, Wang-xin
    [J]. PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL III, 2009, : 495 - +
  • [5] Multi-view Learning for Semi-supervised Sentiment Classification
    Su, Yan
    Li, Shoushan
    Ju, Shengfeng
    Zhou, Guodong
    Li, Xiaojun
    [J]. 2012 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2012), 2012, : 13 - 16
  • [6] Multi-view semi-supervised learning for image classification
    Zhu, Songhao
    Sun, Xian
    Jin, Dongliang
    [J]. NEUROCOMPUTING, 2016, 208 : 136 - 142
  • [7] Regularized extreme learning machine for multi-view semi-supervised action recognition
    Iosifidis, Alexandros
    Tefas, Anastasios
    Pitas, Ioannis
    [J]. NEUROCOMPUTING, 2014, 145 : 250 - 262
  • [8] A Multi-view Regularization Method for Semi-supervised Learning
    Wang, Jiao
    Luo, Siwei
    Li, Yan
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 1, PROCEEDINGS, 2010, 6063 : 444 - 449
  • [9] Human Action Recognition Based on Multi-view Semi-supervised Learning
    Tang, Chao
    Wang, Wenjian
    Wang, Xiaofeng
    Zhang, Chen
    Zou, Le
    [J]. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (04): : 376 - 384
  • [10] Fast Multi-View Semi-Supervised Learning With Learned Graph
    Zhang, Bin
    Qiang, Qianyao
    Wang, Fei
    Nie, Feiping
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) : 286 - 299