Regularized extreme learning machine for multi-view semi-supervised action recognition

被引:46
|
作者
Iosifidis, Alexandros [1 ]
Tefas, Anastasios [1 ]
Pitas, Ioannis [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece
关键词
Extreme learning machine; Semi-supervised learning; Multi-view learning; FRAMEWORK;
D O I
10.1016/j.neucom.2014.05.036
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, three novel classification algorithms aiming at (semi-)supervised action classification are proposed. Inspired by the effectiveness of discriminant subspace learning techniques and the fast and efficient Extreme Learning Machine (ELM) algorithm for Single-hidden Layer Feedforward Neural networks training, the ELM algorithm is extended by incorporating discrimination criteria in its optimization process, in order to enhance its classification performance. The proposed Discriminant ELM algorithm is extended, by incorporating proper regularization in its optimization process, in order to exploit information appearing in both labeled and unlabeled action instances. An iterative optimization scheme is proposed in order to address multi-view action classification. The proposed classification algorithms are evaluated on three publicly available action recognition databases providing state-of-the-art performance in all the cases. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:250 / 262
页数:13
相关论文
共 50 条
  • [1] Multi-view Regularized Extreme Learning Machine for Human Action Recognition
    Iosifidis, Alexandros
    Tefas, Anastasios
    Pitas, Ioannis
    ARTIFICIAL INTELLIGENCE: METHODS AND APPLICATIONS, 2014, 8445 : 84 - 94
  • [2] Human Action Recognition Based on Multi-view Semi-supervised Learning
    Tang C.
    Wang W.
    Wang X.
    Zhang C.
    Zou L.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (04): : 376 - 384
  • [3] Multi-View Action Recognition Method Based on Regularized Extreme Learning Machine
    He, Wei
    Liu, Bo
    Xiao, Yanshan
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 854 - 857
  • [4] Human Action Recognition Based on Multi-View Regularized Extreme Learning Machine
    Iosifidis, Alexandros
    Tefas, Anastasios
    Pitas, Ioannis
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2015, 24 (05)
  • [5] View Construction for Multi-view Semi-supervised Learning
    Sun, Shiliang
    Jin, Feng
    Tu, Wenting
    ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I, 2011, 6675 : 595 - 601
  • [6] Fisher-regularized supervised and semi-supervised extreme learning machine
    Ma, Jun
    Wen, Yakun
    Yang, Liming
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (10) : 3995 - 4027
  • [7] Fisher-regularized supervised and semi-supervised extreme learning machine
    Jun Ma
    Yakun Wen
    Liming Yang
    Knowledge and Information Systems, 2020, 62 : 3995 - 4027
  • [8] Multi-view classification with semi-supervised learning for SAR target recognition
    Zhang, Yukun
    Guo, Xiansheng
    Ren, Haohao
    Li, Lin
    SIGNAL PROCESSING, 2021, 183
  • [9] EMPC: Efficient multi-view parallel co-learning for semi-supervised action recognition
    Tong, Anyang
    Tang, Chao
    Wang, Wenjian
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [10] Sparse regularized discriminative canonical correlation analysis for multi-view semi-supervised learning
    Shudong Hou
    Heng Liu
    Quansen Sun
    Neural Computing and Applications, 2019, 31 : 7351 - 7359