On finite groups with cyclic Abelian subgroups

被引:0
|
作者
Maznichenko S.V. [1 ]
机构
[1] Ukrainian Pedagogic University, Kiev
关键词
Finite Group; Nilpotent Group; Abelian Subgroup; Solvable Group; Proper Subgroup;
D O I
10.1007/BF02514337
中图分类号
学科分类号
摘要
Solvable and minimal unsolvable finite groups with cyclic Abelian subgroups are constructively described. © 1999 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:839 / 841
页数:2
相关论文
共 50 条
  • [31] Finite groups with many cyclic subgroups
    Xiaofang Gao
    Rulin Shen
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 485 - 498
  • [32] On groups with all proper subgroups finite-by-abelian-by-finite
    Ulderico Dardano
    Fausto De Mari
    Archiv der Mathematik, 2021, 116 : 611 - 619
  • [33] Cyclic permutable subgroups of finite groups
    Cossey, J
    Stonehewer, SE
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2001, 71 : 169 - 176
  • [34] ON THE NUMBER OF CYCLIC SUBGROUPS IN FINITE GROUPS
    Song, Keyan
    Zhou, Wei
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (41): : 593 - 596
  • [35] ON CYCLIC SUBGROUPS OF FINITE-GROUPS
    DEMPWOLFF, U
    WONG, SK
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1982, 25 (FEB) : 19 - 20
  • [36] Finite groups all of whose abelian subgroups are QTI-subgroups
    Qian, Guohua
    Tang, Feng
    JOURNAL OF ALGEBRA, 2008, 320 (09) : 3605 - 3611
  • [37] The conjugacy diameters of non-abelian finite p-groups with cyclic maximal subgroups
    Aseeri, Fawaz
    Kaspczyk, Julian
    AIMS MATHEMATICS, 2024, 9 (05): : 10734 - 10755
  • [38] FINITE p-GROUPS ALL OF WHOSE NON-NORMAL ABELIAN SUBGROUPS ARE CYCLIC
    Zhang, Lihua
    Zhang, Junqiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (08)
  • [39] On the asymptotic behaviour of the number of subgroups of finite abelian groups
    Gautami Bhowmik
    Jie Wu
    Archiv der Mathematik, 1997, 69 : 95 - 104
  • [40] Large Abelian unipotent subgroups of finite Chevalley groups
    Vdovin E.P.
    Algebra and Logic, 2001, 40 (5) : 292 - 305