Lax operators algebras and gradings on semisimple Lie algebras

被引:0
|
作者
O. K. Sheinman
机构
[1] Russian Academy of Sciences,Steklov Institute of Mathematics
[2] Independent University of Moscow,undefined
来源
Doklady Mathematics | 2015年 / 91卷
关键词
Riemann Surface; Steklov Institute; Central Extension; Current Algebra; Novikov Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:160 / 162
页数:2
相关论文
共 50 条
  • [21] Multiplicity-Free Gradings on Semisimple Lie and Jordan Algebras and Skew Root Systems
    Han, Gang
    Liu, Yucheng
    Lu, Kang
    ALGEBRA COLLOQUIUM, 2019, 26 (01) : 123 - 138
  • [22] Group Gradings on Filiform Lie Algebras
    Bahturin, Yuri
    Goze, Michel
    Remm, Elisabeth
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (01) : 40 - 62
  • [23] Projections of Semisimple Lie Algebras
    Gein, A. G.
    ALGEBRA AND LOGIC, 2019, 58 (02) : 103 - 114
  • [24] Projections of Semisimple Lie Algebras
    A. G. Gein
    Algebra and Logic, 2019, 58 : 103 - 114
  • [25] Gradings on simple Jordan and Lie algebras
    Bahturin, YA
    Shestakov, IP
    Zaicev, MV
    JOURNAL OF ALGEBRA, 2005, 283 (02) : 849 - 868
  • [26] A class of gradings of simple Lie algebras
    Baur, Karin
    Wallach, Nolan
    LIE ALGEBRAS, VERTEX OPERATOR ALGEBRAS AND THEIR APPLICATIONS, 2007, 442 : 3 - +
  • [27] SEMISIMPLE CYCLIC ELEMENTS IN SEMISIMPLE LIE ALGEBRAS
    Elashvili, A. G.
    Jibladze, M.
    Kac, V. G.
    TRANSFORMATION GROUPS, 2022, 27 (02) : 429 - 470
  • [28] Constructing semisimple subalgebras of semisimple Lie algebras
    de Graaf, Willem A.
    JOURNAL OF ALGEBRA, 2011, 325 (01) : 416 - 430
  • [29] SEMISIMPLE CYCLIC ELEMENTS IN SEMISIMPLE LIE ALGEBRAS
    A. G. ELASHVILI
    M. JIBLADZE
    V. G. KAC
    Transformation Groups, 2022, 27 : 429 - 470