Noise2Atom: unsupervised denoising for scanning transmission electron microscopy images

被引:21
|
作者
Wang F. [1 ]
Henninen T.R. [1 ]
Keller D. [1 ]
Erni R. [1 ]
机构
[1] Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, Dübendorf
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Deep learning; Denoising; STEM images; Unsupervised learning;
D O I
10.1186/s42649-020-00041-8
中图分类号
学科分类号
摘要
We propose an effective deep learning model to denoise scanning transmission electron microscopy (STEM) image series, named Noise2Atom, to map images from a source domain S to a target domain C, where S is for our noisy experimental dataset, and C is for the desired clear atomic images. Noise2Atom uses two external networks to apply additional constraints from the domain knowledge. This model requires no signal prior, no noise model estimation, and no paired training images. The only assumption is that the inputs are acquired with identical experimental configurations. To evaluate the restoration performance of our model, as it is impossible to obtain ground truth for our experimental dataset, we propose consecutive structural similarity (CSS) for image quality assessment, based on the fact that the structures remain much the same as the previous frame(s) within small scan intervals. We demonstrate the superiority of our model by providing evaluation in terms of CSS and visual quality on different experimental datasets. © 2020, The Author(s).
引用
收藏
相关论文
共 50 条
  • [31] COMPARISON OF TRANSMISSION ELECTRON MICROSCOPY AND SCANNING ELECTRON MICROSCOPY OF FRACTURE SURFACES
    JOHARI, O
    JOURNAL OF METALS, 1968, 20 (06): : 26 - &
  • [32] Automated electron tomography with scanning transmission electron microscopy
    Feng, Jianglin
    Somlyo, Andrew P.
    Somlyo, Avril V.
    Shao, Zhifeng
    JOURNAL OF MICROSCOPY, 2007, 228 (03) : 406 - 412
  • [33] Electron tomography algorithms in scanning transmission electron microscopy
    E. V. Pustovalov
    V. S. Plotnikov
    B. N. Grudin
    E. B. Modin
    O. V. Voitenko
    Bulletin of the Russian Academy of Sciences: Physics, 2013, 77 (8) : 995 - 998
  • [34] Feature extraction via similarity search: application to atom finding and denoising in electron and scanning probe microscopy imaging
    Somnath, Suhas
    Smith, Christopher R.
    Kalinin, Sergei V.
    Chi, Miaofang
    Borisevich, Albina
    Cross, Nicholas
    Duscher, Gerd
    Jesse, Stephen
    ADVANCED STRUCTURAL AND CHEMICAL IMAGING, 2018, 4
  • [35] Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts
    Yankovich, Andrew B.
    Berkels, Benjamin
    Dahmen, W.
    Binev, P.
    Sanchez, S. I.
    Bradley, S. A.
    Li, Ao
    Szlufarska, Izabela
    Voyles, Paul M.
    NATURE COMMUNICATIONS, 2014, 5
  • [36] Leveraging generative adversarial networks to create realistic scanning transmission electron microscopy images
    Abid Khan
    Chia-Hao Lee
    Pinshane Y. Huang
    Bryan K. Clark
    npj Computational Materials, 9
  • [37] Leveraging generative adversarial networks to create realistic scanning transmission electron microscopy images
    Khan, Abid
    Lee, Chia-Hao
    Huang, Pinshane Y.
    Clark, Bryan K.
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [38] Experimental quantification of annular dark-field images in scanning transmission electron microscopy
    LeBeau, James M.
    Stemmer, Susanne
    ULTRAMICROSCOPY, 2008, 108 (12) : 1653 - 1658
  • [39] Segmentation of scanning-transmission electron microscopy images using the ordered median problem
    Calvino, Jose J.
    Lopez-Haro, Miguel
    Munoz-Ocana, Juan M.
    Puerto, Justo
    Rodriguez-Chia, Antonio M.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 302 (02) : 671 - 687
  • [40] Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts
    Andrew B. Yankovich
    Benjamin Berkels
    W. Dahmen
    P. Binev
    S. I. Sanchez
    S. A. Bradley
    Ao Li
    Izabela Szlufarska
    Paul M. Voyles
    Nature Communications, 5