Fully automated intracranial ventricle segmentation on CT with 2D regional convolutional neural network to estimate ventricular volume

被引:0
|
作者
Trevor J. Huff
Parker E. Ludwig
David Salazar
Justin A. Cramer
机构
[1] Creighton University School of Medicine,Department of Biomechanics
[2] University of Nebraska at Omaha,undefined
[3] University of Nebraska Medical Center,undefined
来源
International Journal of Computer Assisted Radiology and Surgery | 2019年 / 14卷
关键词
U-Net; Convolutional neural network (CNN); Machine learning; Intracranial ventricle volume; Automated segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1923 / 1932
页数:9
相关论文
共 50 条
  • [41] 3D Convolutional Neural Network Segmentation of Intracerebral Hemorrhage on CT
    Sharrock, Matthew F.
    Muschelli, John
    Ali, Hasan
    Mould, W. Andrew
    Hanley, Dan F.
    STROKE, 2019, 50
  • [42] Artery and Vein Segmentation of the Cerebral Vasculature in 4D CT using a 3D Fully Convolutional Neural Network
    Meijs, Midas
    Manniesing, Rashindra
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [43] Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT
    Chang, P. D.
    Kuoy, E.
    Grinband, J.
    Weinberg, B. D.
    Thompson, M.
    Homo, R.
    Chen, J.
    Abcede, H.
    Shafie, M.
    Sugrue, L.
    Filippi, C. G.
    Su, M. -Y.
    Yu, W.
    Hess, C.
    Chow, D.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (09) : 1609 - 1616
  • [44] Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks
    Hashimoto, Fumio
    Kakimoto, Akihiro
    Ota, Nozomi
    Ito, Shigeru
    Nishizawa, Sadahiko
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2019, 12 (02) : 210 - 215
  • [45] U-SEGNET: FULLY CONVOLUTIONAL NEURAL NETWORK BASED AUTOMATED BRAIN TISSUE SEGMENTATION TOOL
    Kumar, Pulkit
    Nagar, Pravin
    Arora, Chetan
    Gupta, Anubha
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3503 - 3507
  • [46] Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks
    Fumio Hashimoto
    Akihiro Kakimoto
    Nozomi Ota
    Shigeru Ito
    Sadahiko Nishizawa
    Radiological Physics and Technology, 2019, 12 : 210 - 215
  • [47] Automated Segmentation of Olivine Phenocrysts in a Volcanic Rock Thin Section Using a Fully Convolutional Neural Network
    Leichter, Artem
    Almeev, Renat R.
    Wittich, Dennis
    Beckmann, Philipp
    Rottensteiner, Franz
    Holtz, Francois
    Sester, Monika
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [48] Automated Left and Right Chamber Segmentation in Cardiac MRI Using Dense Fully Convolutional Neural Network
    Penso, Marco
    Moccia, Sara
    Scafuri, Stefano
    Muscogiuri, Giuseppe
    Pontone, Gianluca
    Pepi, Mauro
    Caiani, Enrico Gianluca
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [49] Automated segmentation of the left-ventricle from MRI with a fully convolutional network to investigate CTRCD in breast cancer patients
    Kar, Julia
    Cohen, Michael V.
    McQuiston, Samuel A.
    Poorsala, Teja
    Malozzi, Christopher M.
    JOURNAL OF MEDICAL IMAGING, 2024, 11 (02)
  • [50] Wall segmentation in 2D images using convolutional neural networks
    Bjekic, Mihailo
    Lazovic, Ana
    Venkatachalam, K.
    Bacanin, Nebojsa
    Zivkovic, Miodrag
    Kvascev, Goran
    Nikolic, Bosko
    PEERJ COMPUTER SCIENCE, 2023, 9