A review of different working fluids used in the receiver tube of parabolic trough solar collector

被引:0
|
作者
Asish Sarangi
Abhisek Sarangi
Sudhansu Sekhar Sahoo
Ramesh Kumar Mallik
Subhankar Ray
Shinu M. Varghese
机构
[1] Odisha University of Technology and Research,Department of Mechanical Engineering
[2] Indian Institute of Technology,School of Mechanical Sciences
[3] Empereal-KGDS Renewable Energy Pvt. Ltd.,undefined
关键词
Concentrated solar power; Parabolic trough solar collectors; Heat transfer fluids; Nanofluids; Thermo-physical properties; Heat transfer augmentation;
D O I
暂无
中图分类号
学科分类号
摘要
Parabolic trough solar collectors (PTSCs) or parabolic trough collectors have caught the interest of scientists and renewable energy enthusiasts due to their wide range of operating temperatures between 100 and 700 °C and their potential for power production as well as industrial process heating. More PTSCs have been constructed than all other concentrated sun-producing apparatuses put together. One of the most important functional components of the PTSC is the space for heat collection, also known as the absorber tube and transporting fluids. To increase its thermal potential, numerous investigations on the fluids in the absorber tube flow have been conducted. Better fluid thermo-physical properties are required to improve heat transfer and the system's overall efficiency. Examining different heat transfer fluids (HTF) that have been used for PTSC absorber tube/receiver tube is the goal of the current review. The usage of novel HTFs like nanofluids is also investigated, along with conventional fluids like thermic fluid and water. Review of the performance of the PTSC with various fluids using experiments and numerical methods are presented.. There are many difficulties with once-through PTSCs since two-phase flow circumstances make them worse and can occasionally cause tube bending. Summarized comparisons of several studies looking at the stability, manufacturing methods, and effects of hybrid nanofluids on PTSC thermal properties are summarized. For HTF inside the absorber tube, hybrid nanofluids and nanofluids may be used to enhance the thermal and optical characteristics of PTSC. It also demonstrates that metal oxide hybrid nanofluids are discovered to be more successful and efficient in enhancing thermal conductivity causing heat transfer augmentation than oxide nanofluids. This research, in our opinion, will encourage scientists and manufacturers to choose appropriate working fluids for PTSC applications.
引用
下载
收藏
页码:3929 / 3954
页数:25
相关论文
共 50 条
  • [31] Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting
    Gong, Xiangtao
    Wang, Fuqiang
    Wang, Haiyan
    Tan, Jianyu
    Lai, Qingzhi
    Han, Huaizhi
    SOLAR ENERGY, 2017, 144 : 185 - 202
  • [32] Selection of working fluids for medium temperature heat pipes used in parabolic trough solar receivers
    Liu, Yun
    Zhang, Hong
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 62 - +
  • [33] Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector
    Cheng, Z. D.
    He, Y. L.
    Xiao, J.
    Tao, Y. B.
    Xu, R. J.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2010, 37 (07) : 782 - 787
  • [34] Experimental study of a parabolic trough solar collector with rotating absorber tube
    Norouzi, Amir Mohammad
    Siavashi, Majid
    Ahmadi, Rouhollah
    Tahmasbi, Milad
    Renewable Energy, 2021, 168 : 734 - 749
  • [35] Assessment of circular and elliptical absorber tube in solar parabolic trough collector
    Jebasingh, V. K.
    Johns, J. Divya
    Arunkumar, T.
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2019, : 873 - 878
  • [36] Experimental study of a parabolic trough solar collector with rotating absorber tube
    Norouzi, Amir Mohammad
    Siavashi, Majid
    Ahmadi, Rouhollah
    Tahmasbi, Milad
    RENEWABLE ENERGY, 2021, 168 : 734 - 749
  • [37] Assessment of circular and elliptical absorber tube in solar parabolic trough collector
    Jebasingh, V.K.
    Divya Johns, J.
    Arunkumar, T.
    International Journal of Ambient Energy, 2022, 43 (01): : 873 - 878
  • [38] Absorber Tube with Internal Hinged Blades for Solar Parabolic Trough Collector
    Kalidasan, B.
    Shankar, R.
    Srinivas, T.
    5TH INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY RESEARCH (ICAER) 2015, 2016, 90 : 463 - 469
  • [39] A Novel Design of Parabolic Trough Solar Collector's Absorber Tube
    Djenane, Mohamed Salim
    Hadji, Seddik
    Touhami, Omar
    Zitouni, Abdel Halim
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (03):
  • [40] Optical Analysis of Solar Parabolic Trough Collector with Flat Concentrating Photovoltaic Receiver
    Kamnapure, Nikhilesh R.
    Reddy, K. S.
    DYNAMICS OF MACHINES AND MECHANISMS, INDUSTRIAL RESEARCH, 2014, 592-594 : 2396 - 2403