An inverse problem related to a half-linear eigenvalue problem

被引:0
|
作者
Wei-Chuan Wang
Yan-Hsiou Cheng
机构
[1] National Quemoy University,Center for General Education
[2] National Taipei University of Education,Department of Mathematics and Information Education
来源
关键词
Dirichlet Boundary Condition; Nodal Point; Asymptotic Estimate; Nodal Data; String Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We study an inverse problem on the half-linear Dirichlet eigenvalue problem −(|y′(x)|p−2y′(x))′=(p−1)λr(x)|y(x)|p−2y(x), where p>1 with p≠2 and r is a positive function defined on [0,1]. Using eigenvalues and nodal data (the lengths of two consecutive zeros of solutions), we reconstruct r−1/p(x) and its derivatives. Our method is based on (Law and Yang in Inverse Probl. 14:299-312, 779-780, 1998; Shen and Tsai in Inverse Probl. 11:1113-1123, 1995), and our result extends the result in (Shen and Tsai in Inverse Probl. 11:1113-1123, 1995) for the linear case to the half-linear case.
引用
收藏
相关论文
共 50 条
  • [31] Half-linear Sturm-Liouville problem with weights: Asymptotic behavior of eigenfunctions
    Drabek, Pavel
    Kufner, Alois
    Kuliev, Komil
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 284 (01) : 148 - 154
  • [32] Half-linear Sturm-Liouville problem with weights: Asymptotic behavior of eigenfunctions
    Pavel Drábek
    Alois Kufner
    Komil Kuliev
    Proceedings of the Steklov Institute of Mathematics, 2014, 284 : 148 - 154
  • [33] Inverse Generalized Eigenvalue Problem for Generalized Jacobi Matrices With Linear Relation
    Li, Zhibin
    Chang, Jing
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 6: MODELLING & SIMULATION INDUSTRIAL ENGINEERING & MANAGEMENT, 2010, : 369 - 372
  • [34] Inverse Eigenvalue Problem for a Class of Upper Triangular Matrices with Linear Relation
    Li, Zhibin
    Li, Shuai
    MECHANICAL COMPONENTS AND CONTROL ENGINEERING III, 2014, 668-669 : 1068 - 1071
  • [35] Inverse eigenvalue problem for generalized periodic Jacobi matrices with linear relation
    College of Mathematics and Physics, Dalian Jiaotong University, Dalian, China
    Int. Symp. Intelligent Inf. Technol. Appl., IITA, 1600, (18-20):
  • [36] Inverse Eigenvalue Problem for Generalized Periodic Jacobi Matrices With Linear Relation
    Li, Zhibin
    Zhao, Xinxin
    2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL 1, PROCEEDINGS, 2009, : 18 - 20
  • [37] Some criteria for discreteness of spectrum of half-linear fourth order Sturm–Liouville problem
    Pavel Drábek
    Komil Kuliev
    Marco Marletta
    Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [38] An inverse eigenvalue problem for Jacobi matrices with a missing eigenvalue
    He, Bin
    Wang, Min
    Wei, Guangsheng
    APPLIED MATHEMATICS LETTERS, 2022, 133
  • [39] AN INVERSE EIGENVALUE PROBLEM FOR JACOBI MATRICES
    Er-xiong Jiang (Department of Mathematics
    JournalofComputationalMathematics, 2003, (05) : 569 - 584
  • [40] On a class of inverse quadratic eigenvalue problem
    Yuan, Yongxin
    Dai, Hua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 2662 - 2669