On the quadratic finite element approximation to the obstacle problem

被引:0
|
作者
Wang L.-H. [1 ]
机构
[1] State Key Lab. of Sci./Eng. Comp., Acad. of Math. and System Sciences, Chinese Academy of Sciences, Beijing 100080
关键词
Mathematics Subject Classification (1991): 65N30;
D O I
10.1007/s002110100368
中图分类号
学科分类号
摘要
In this paper, we obtain the error bound O (h3/2-ε) for any ε > 0, for the piecewise quadratic finite element approximation to the obstacle problem, without the hypothesis that the free boundary has finite length (see [3]).
引用
收藏
页码:771 / 778
页数:7
相关论文
共 50 条
  • [31] Galerkin least squares finite element method for the obstacle problem
    Burman, Erik
    Hansbo, Peter
    Larson, Mats G.
    Stenberg, Rolf
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 313 : 362 - 374
  • [32] Morley finite element method for the von Karman obstacle problem
    Carstensen, Carsten
    Gaddam, Sharat
    Nataraj, Neela
    Pani, Amiya K.
    Shylaja, Devika
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (05): : 1873 - 1894
  • [33] Convergence analysis of finite element method for a parabolic obstacle problem
    Gudi, Thirupathi
    Majumder, Papri
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 357 : 85 - 102
  • [34] SUPERCONVERGENCE OF THE MORTAR FINITE ELEMENT APPROXIMATION TO A PARABOLIC PROBLEM
    GU Hong ZHOU Aihui(Institute of Systems Science
    Journal of Systems Science & Complexity, 1999, (04) : 350 - 356
  • [35] Finite element approximation of a free boundary plasma problem
    Jintao Cui
    Thirupathi Gudi
    Advances in Computational Mathematics, 2017, 43 : 517 - 535
  • [36] A FINITE-ELEMENT APPROXIMATION OF THE BENARD-PROBLEM
    KRISHNAN, R
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1985, 1 (06): : 317 - 324
  • [37] Finite element approximation for the viscoelastic fluid motion problem
    He, YN
    Lin, YP
    Shen, SSP
    Sun, WW
    Tait, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (02) : 201 - 222
  • [38] Isoparametric finite element approximation for a boundary flux problem
    Andreev, AB
    Todorov, TD
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2006, 16 (01) : 46 - 66
  • [39] FINITE-ELEMENT APPROXIMATION OF A MODEL VORTEX PROBLEM
    WOOD, PA
    BARRETT, JW
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1995, 16 (1-2) : 261 - 285
  • [40] Finite Element Approximation of a Contact Vector Eigenvalue Problem
    Hennie De Schepper
    Roger Van Keer
    Applications of Mathematics, 2003, 48 (6) : 559 - 571