A transition of ω-Fe3C → ω′-Fe3C → θ′-Fe3C in Fe-C martensite

被引:0
|
作者
D. H. Ping
H. P. Xiang
H. Chen
L. L. Guo
K. Gao
X. Lu
机构
[1] National Institute for Materials Science,School of Materials Science and Engineering
[2] Tongji University,School of Materials Science and Engineering
[3] Dalian Jiaotong University,School of Materials Science and Engineering
[4] University of Science and Technology Beijing,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Carbon steel is strong primarily because of carbides with the most well-known one being θ-Fe3C type cementite. However, the formation mechanism of cementite remains unclear. In this study, a new metastable carbide formation mechanism was proposed as ω-Fe3C → ω′-Fe3C → θ′-Fe3C based on the transmission electron microscopy (TEM) observation. Results shown that in quenched high-carbon binary alloys, hexagonal ω-Fe3C fine particles are distributed in the martensite twinning boundary alone, while two metastable carbides (ω′ and θ′) coexist in the quenched pearlite. These two carbides both possess orthorhombic crystal structure with different lattice parameters (aθ′ = aω′ = aω = 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{2}$$\end{document}aα-Fe = 4.033 Å, bθ′ = 2 × bω′ = 2 × cω = 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{3}$$\end{document}aα-Fe = 4.94 Å, and cθ′ = cω′ = 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{3}$$\end{document}aω = 6.986 Å for aα-Fe = 2.852 Å). The θ′ unit cell can be constructed simply by merging two ω′ unit cells together along its bω′ axis. Thus, the θ′ unit cell contains 12 Fe atoms and 4 C atoms, which in turn matches the composition and atomic number of the θ-Fe3C cementite unit cell. The proposed theory in combination with experimental results gives a new insight into the carbide formation mechanism in Fe-C martensite.
引用
收藏
相关论文
共 50 条
  • [41] First principles calculation of finite temperature magnetism in Fe and Fe3C
    Eisenbach, M.
    Nicholson, D. M.
    Rusanu, A.
    Brown, G.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
  • [42] Iron Catalysts for the Growth of Carbon Nanofibers: Fe, Fe3C or Both?
    He, Zhanbing
    Maurice, Jean-Luc
    Gohier, Aurelien
    Lee, Chang Seok
    Pribat, Didier
    Cojocaru, Costel Sorin
    [J]. CHEMISTRY OF MATERIALS, 2011, 23 (24) : 5379 - 5387
  • [43] Magnetic nanocomposites of Fe3C or Ni-substituted (Fe3C/Fe3O4) with carbon for degradation of methylene orange and p-nitrophenol
    Gangwar, Asnit
    Singh, Ankit
    Pal, Shaili
    Sinha, Indrajit
    Meena, Sher Singh
    Prasad, Nand Kishore
    [J]. JOURNAL OF CLEANER PRODUCTION, 2021, 309
  • [44] Electrochemical properties of α-Fe + Fe3C nanocrystalline composites in acidic environments
    Syugaev, A. V.
    Lomaeva, S. F.
    Reshetnikov, S. M.
    [J]. PROTECTION OF METALS AND PHYSICAL CHEMISTRY OF SURFACES, 2010, 46 (01) : 82 - 89
  • [45] Solvothermal synthesis of Fe7C3 and Fe3C nanostructures with phase and morphology control
    Williams, Brent
    Clifford, Dustin
    El-Gendy, Ahmed A.
    Carpenter, Everett E.
    [J]. JOURNAL OF APPLIED PHYSICS, 2016, 120 (03)
  • [46] Fe3C生成机理及物相分析
    惠银安
    王德永
    姜茂发
    [J]. 东北大学学报(自然科学版), 2003, (09) : 828 - 831
  • [47] Compression of Fe3C to 30 GPa at room temperature
    Li, J
    Mao, HK
    Fei, Y
    Gregoryanz, E
    Eremets, M
    Zha, CS
    [J]. PHYSICS AND CHEMISTRY OF MINERALS, 2002, 29 (03) : 166 - 169
  • [48] DIE BINDUNG IM NIAS UND FE3C
    SCHENK, H
    DEHLINGER, U
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1956, 11 (04): : 327 - 327
  • [49] Nanopowders with superparamagnetic Fe3C particles and their annealing behaviour
    David, B.
    Schneeweiss, O.
    Pizurova, N.
    Dumitrache, F.
    Fleaca, C.
    Alexandrescu, R.
    [J]. SURFACE AND INTERFACE ANALYSIS, 2010, 42 (6-7) : 699 - 702
  • [50] Synthesis of Fe3C branches via a hexamethylenetetramine route
    Zhang, Peng
    Bi, Lingling
    Zhang, Daguang
    Wang, Xiaobai
    Wang, Wei
    Lei, Xiang
    Yang, Hua
    [J]. MATERIALS RESEARCH BULLETIN, 2016, 76 : 327 - 331