A dynamical systems framework for intermittent data assimilation

被引:0
|
作者
Sebastian Reich
机构
[1] Universität Potsdam,Institut für Mathematik
来源
BIT Numerical Mathematics | 2011年 / 51卷
关键词
Data assimilation; Ensemble Kalman filter; Dynamical systems; Nonlinear filters; Optimal transportation; 93E11; 65L09; 37M10; 62F15; 60G35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined using the framework of optimal transportation theory.
引用
收藏
页码:235 / 249
页数:14
相关论文
共 50 条
  • [1] A dynamical systems framework for intermittent data assimilation
    Reich, Sebastian
    BIT NUMERICAL MATHEMATICS, 2011, 51 (01) : 235 - 249
  • [2] CGKN: A deep learning framework for modeling complex dynamical systems and efficient data assimilation
    Chen, Chuanqi
    Chen, Nan
    Zhang, Yinling
    Wu, Jin-Long
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 532
  • [3] A generalization of using an adjoint model in intermittent data assimilation systems
    Huang, XY
    MONTHLY WEATHER REVIEW, 1999, 127 (05) : 766 - 787
  • [4] ADVANCED DATA ASSIMILATION IN STRONGLY NONLINEAR DYNAMICAL-SYSTEMS
    MILLER, RN
    GHIL, M
    GAUTHIEZ, F
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1994, 51 (08) : 1037 - 1056
  • [5] Observation data compression for variational assimilation of dynamical systems (R)
    Cheng, Sibo
    Lucor, Didier
    Argaud, Jean-Philippe
    JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 53 (53)
  • [6] Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction-assimilation system
    Carrassi, Alberto
    Ghil, Michael
    Trevisan, Anna
    Uboldi, Francesco
    CHAOS, 2008, 18 (02)
  • [7] Machine Learning With Data Assimilation and Uncertainty Quantification for Dynamical Systems: A Review
    Cheng, Sibo
    Quilodran-Casas, Cesar
    Ouala, Said
    Farchi, Alban
    Liu, Che
    Tandeo, Pierre
    Fablet, Ronan
    Lucor, Didier
    Iooss, Bertrand
    Brajard, Julien
    Xiao, Dunhui
    Janjic, Tijana
    Ding, Weiping
    Guo, Yike
    Carrassi, Alberto
    Bocquet, Marc
    Arcucci, Rossella
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (06) : 1361 - 1387
  • [8] Machine Learning With Data Assimilation and Uncertainty Quantification for Dynamical Systems: A Review
    Sibo Cheng
    César Quilodrán-Casas
    Said Ouala
    Alban Farchi
    Che Liu
    Pierre Tandeo
    Ronan Fablet
    Didier Lucor
    Bertrand Iooss
    Julien Brajard
    Dunhui Xiao
    Tijana Janjic
    Weiping Ding
    Yike Guo
    Alberto Carrassi
    Marc Bocquet
    Rossella Arcucci
    IEEE/CAAJournalofAutomaticaSinica, 2023, 10 (06) : 1361 - 1387
  • [9] Data assimilation with machine learning for dynamical systems: Modelling indoor ventilation
    Heaney, Claire E.
    Tang, Jieyi
    Yan, Jintao
    Guo, Donghu
    Ipock, Jamesson
    Kaluvakollu, Sanjana
    Lin, Yushen
    Shao, Danhui
    Chen, Boyang
    Mottet, Laetitia
    Kumar, Prashant
    Pain, Christopher C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 643
  • [10] Data assimilation in dynamical cognitive science
    Engbert, Ralf
    Rabe, Maximilian M.
    Schwetlick, Lisa
    Seelig, Stefan A.
    Reich, Sebastian
    Vasishth, Shravan
    TRENDS IN COGNITIVE SCIENCES, 2022, 26 (02) : 99 - 102