Correction to: Pore Network Modeling of the Effects of Viscosity Ratio and Pressure Gradient on Steady-State Incompressible Two-Phase Flow in Porous Media

被引:0
|
作者
Magnus Aa. Gjennestad
Mathias Winkler
Alex Hansen
机构
[1] Norwegian University of Science and Technology,PoreLab and Department of Physics
来源
Transport in Porous Media | 2021年 / 137卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the original publication of the article, the Electronic Supplementary Material was missed.
引用
收藏
页码:281 / 281
相关论文
共 50 条
  • [41] Homogenization of nonisothermal immiscible incompressible two-phase flow in porous media
    Amaziane, B.
    Jurak, M.
    Pankratov, L.
    Piatnitski, A.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 43 : 192 - 212
  • [42] True-to-mechanism model of steady-state two-phase flow in porous media, using decomposition into prototype flows
    Valavanides, MS
    Payatakes, AC
    [J]. ADVANCES IN WATER RESOURCES, 2001, 24 (3-4) : 385 - 407
  • [43] Local statistics of immiscible and incompressible two-phase flow in porous media
    Fyhn, Hursanay
    Sinha, Santanu
    Hansen, Alex
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 616
  • [44] Simulation of incompressible two-phase flow in porous media with large timesteps
    Cogswell, Daniel A.
    Szulczewski, Michael L.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 345 : 856 - 865
  • [45] A Steady-State Upscaling Approach for Immiscible Two-Phase Flow
    G. A. Virnovsky
    H. A. Friis
    A. Lohne
    [J]. Transport in Porous Media, 2004, 54 : 167 - 192
  • [46] A steady-state upscaling approach for immiscible two-phase flow
    Virnovsky, GA
    Friis, HA
    Lohne, A
    [J]. TRANSPORT IN POROUS MEDIA, 2004, 54 (02) : 167 - 192
  • [47] Artificial neural network modeling of scale-dependent dynamic capillary pressure effects in two-phase flow in porous media
    Abidoye, Luqman K.
    Das, Diganta B.
    [J]. JOURNAL OF HYDROINFORMATICS, 2015, 17 (03) : 446 - 461
  • [48] Image-based pore-network modeling of two-phase flow in hydrate-bearing porous media
    Luo, Yongjiang
    Sun, Yushi
    Li, Lijia
    Wang, Xing
    Qin, Chaozhong
    Liu, Lele
    Liu, Changling
    Wu, Dongyu
    [J]. ENERGY, 2022, 252
  • [49] Artificial neural network (ANN) modeling of dynamic effects on two-phase flow in homogenous porous media
    Hanspal, Navraj S.
    Allison, Babatunde A.
    Deka, Lipika
    Das, Diganta B.
    [J]. JOURNAL OF HYDROINFORMATICS, 2013, 15 (02) : 540 - 554
  • [50] Transient and steady-state relative permeabilities from two-phase flow experiments in planar pore networks
    Tsakiroglou, C. D.
    Avraam, D. G.
    Payatakes, A. C.
    [J]. ADVANCES IN WATER RESOURCES, 2007, 30 (09) : 1981 - 1992