Progressive Type-II censoring;
Maximum likelihood estimation;
Uniformly minimum variance unbiased estimator;
Bayes estimation;
Markov Chain Monte Carlo techniques;
D O I:
10.1007/s41872-020-00109-0
中图分类号:
学科分类号:
摘要:
In this study, we consider the estimation of R = P(Y < X) under progressive Type-II censoring scheme when X and Y are independent modified Weibull distributed random variables with different scale but same shape and accelerated parameters. The estimation of R is carried out both in case of known and unknown shape and accelerated parameters. For unknown model parameters, we derive maximum likelihood and Bayes estimators of R. In Bayesian estimation, we use importance sampling and Markov Chain Monte Carlo techniques to obtain Bayes estimate of R. Further, for known model parameters, we determine exact sampling distribution of the maximum likelihood estimator of R, and hence exact confidence interval for R is constructed. The uniformly minimum variance unbiased estimator and Lindley approximate Bayes estimator of R have also been derived. A simulation study is performed to compare different proposed methods of estimation. Finally, for illustration, a real-data analysis is provided.
机构:
UFSCar USP, Interinst Grad Program Stat, Sao Carlos, SP, Brazil
Fed Inst Goias, Anapolis, GO, BrazilUFSCar USP, Interinst Grad Program Stat, Sao Carlos, SP, Brazil
Brito, Eder S.
Ferreira, Paulo H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Bahia, Dept Stat, Salvador, BA, BrazilUFSCar USP, Interinst Grad Program Stat, Sao Carlos, SP, Brazil
Ferreira, Paulo H.
Tomazella, Vera L. D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Sao Carlos, Dept Stat, Sao Carlos, SP, BrazilUFSCar USP, Interinst Grad Program Stat, Sao Carlos, SP, Brazil
Tomazella, Vera L. D.
Martins Neto, Daniele S. B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Brasilia, Dept Math, Brasilia, DF, BrazilUFSCar USP, Interinst Grad Program Stat, Sao Carlos, SP, Brazil
Martins Neto, Daniele S. B.
Ehlers, Ricardo S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos, SP, BrazilUFSCar USP, Interinst Grad Program Stat, Sao Carlos, SP, Brazil