Modeling Differential Faraday Rotation in the Solar Corona

被引:0
|
作者
Jason E. Kooi
Molly E. Kaplan
机构
[1] U.S. Naval Research Laboratory,Department of Physics
[2] University of California,undefined
来源
Solar Physics | 2020年 / 295卷
关键词
Corona; Corona, models; Electric currents and current sheets; Magnetic fields, corona; Plasma physics; Polarization, radio; Others, Faraday rotation;
D O I
暂无
中图分类号
学科分类号
摘要
For decades, radio remote-sensing techniques have been used to probe the plasma structure of the solar corona at distances of 2 – 20R⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$20~\mathrm{R}_{\odot }$\end{document}. Measurement of Faraday rotation, the change in the polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma, has proven to be one of the best methods for determining the coronal magnetic-field strength and structure. Faraday-rotation observations of spatially extended radio sources provide the unique opportunity to measure differential Faraday rotation [Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta $\end{document}RM] the difference in the Faraday-rotation measure between two closely spaced lines of sight (LOS) through the corona. Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta $\end{document}RM is proportional to the electric current within an Ampèrian loop formed, in part, by the two closely spaced LOS. We report the expected Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta $\end{document}RM for two sets of models for the corona: one set of models for the corona employs a spherically symmetric plasma density, while the other breaks this symmetry by assuming that the heliospheric current sheet (HCS) is a finite-width streamer-belt region containing a high-density plasma. For each plasma-density model, we evaluate the ΔRM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta \mathrm{RM}$\end{document} for three model coronal magnetic fields: a radial dipole and interplanetary magnetic field (DIMF), a dipole + current sheet (DCS), and a dipole + quadrupole + current sheet (DQCS). These models predict values of 0.01≲ΔRM≲120radm−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.01\lesssim \Delta \mathrm{RM}\lesssim 120~\mbox{rad}\,\mbox{m}^{-2}$\end{document} over the range of parameter space accessible by modern instruments such as the Karl G. Jansky Very Large Array. We conclude that the HCS contribution to Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta $\end{document}RM is not negligible at moderate heliocentric distances (<8R⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$<8~\mathrm{R}_{\odot }$\end{document}) and may account for ≲20%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lesssim 20\,\%$\end{document} of previous observations of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta $\end{document}RM (e.g. made by Spangler, Astrophys. J.670, 841, 2007).
引用
收藏
相关论文
共 50 条
  • [31] On Rotation of the Solar Corona
    M. Lorenc
    M. Rybanský
    I. Dorotovič
    Solar Physics, 2012, 281 : 611 - 619
  • [32] ROTATION OF SOLAR CORONA
    PNEUMAN, GW
    ASTROPHYSICAL JOURNAL, 1966, 145 (03): : 800 - &
  • [33] On the rotation of the solar corona
    Dorotovic, I
    Minarovjech, M
    Rybansky, M
    ASTROPHYSICAL LETTERS & COMMUNICATIONS, 1996, 34 (1-6) : 199 - 205
  • [34] DETERMINATION OF FARADAY-ROTATION OCCURRING BETWEEN BURST-SOURCE IN SOLAR CORONA AND EARTH
    BHONSLE, RV
    MATTOO, SK
    ASTRONOMY & ASTROPHYSICS, 1974, 30 (02) : 301 - 303
  • [35] The effects of differential rotation on the magnetic structure of the solar corona: Magnetohydrodynamic simulations
    Lionello, R
    Riley, P
    Linker, JA
    Mikic, Z
    ASTROPHYSICAL JOURNAL, 2005, 625 (01): : 463 - 473
  • [36] SOLAR ROTATION IN CHROMOSPHERE AND CORONA
    HENZE, W
    DUPREE, AK
    SOLAR PHYSICS, 1973, 33 (02) : 425 - 429
  • [37] A study of the rotation of the solar corona
    Altrock, RC
    SOLAR PHYSICS, 2003, 213 (01) : 23 - 37
  • [38] A Study of the Rotation of the Solar Corona
    Richard C. Altrock
    Solar Physics, 2003, 213 : 23 - 37
  • [39] SOLAR ROTATION IN CHROMOSPHERE AND CORONA
    HENZE, W
    DUPREE, AK
    SOLAR PHYSICS, 1973, 32 (02) : 508 - 508
  • [40] The Cassini solar Faraday rotation experiment
    Jensen, EA
    Bird, MK
    Asmar, SW
    Iess, L
    Anderson, JD
    Russell, CT
    SOLAR ENCOUNTER, SOLAR-B AND STEREO, 2005, 36 (08): : 1587 - 1594