Modeling Differential Faraday Rotation in the Solar Corona

被引:0
|
作者
Jason E. Kooi
Molly E. Kaplan
机构
[1] U.S. Naval Research Laboratory,Department of Physics
[2] University of California,undefined
来源
Solar Physics | 2020年 / 295卷
关键词
Corona; Corona, models; Electric currents and current sheets; Magnetic fields, corona; Plasma physics; Polarization, radio; Others, Faraday rotation;
D O I
暂无
中图分类号
学科分类号
摘要
For decades, radio remote-sensing techniques have been used to probe the plasma structure of the solar corona at distances of 2 – 20R⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$20~\mathrm{R}_{\odot }$\end{document}. Measurement of Faraday rotation, the change in the polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma, has proven to be one of the best methods for determining the coronal magnetic-field strength and structure. Faraday-rotation observations of spatially extended radio sources provide the unique opportunity to measure differential Faraday rotation [Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta $\end{document}RM] the difference in the Faraday-rotation measure between two closely spaced lines of sight (LOS) through the corona. Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta $\end{document}RM is proportional to the electric current within an Ampèrian loop formed, in part, by the two closely spaced LOS. We report the expected Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta $\end{document}RM for two sets of models for the corona: one set of models for the corona employs a spherically symmetric plasma density, while the other breaks this symmetry by assuming that the heliospheric current sheet (HCS) is a finite-width streamer-belt region containing a high-density plasma. For each plasma-density model, we evaluate the ΔRM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta \mathrm{RM}$\end{document} for three model coronal magnetic fields: a radial dipole and interplanetary magnetic field (DIMF), a dipole + current sheet (DCS), and a dipole + quadrupole + current sheet (DQCS). These models predict values of 0.01≲ΔRM≲120radm−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.01\lesssim \Delta \mathrm{RM}\lesssim 120~\mbox{rad}\,\mbox{m}^{-2}$\end{document} over the range of parameter space accessible by modern instruments such as the Karl G. Jansky Very Large Array. We conclude that the HCS contribution to Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta $\end{document}RM is not negligible at moderate heliocentric distances (<8R⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$<8~\mathrm{R}_{\odot }$\end{document}) and may account for ≲20%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lesssim 20\,\%$\end{document} of previous observations of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta $\end{document}RM (e.g. made by Spangler, Astrophys. J.670, 841, 2007).
引用
收藏
相关论文
共 50 条
  • [1] Modeling Differential Faraday Rotation in the Solar Corona
    Kooi, Jason E.
    Kaplan, Molly E.
    SOLAR PHYSICS, 2020, 295 (08)
  • [2] Faraday rotation probing of the solar corona in 1997
    Mancuso, S
    Spangler, SR
    9TH EUROPEAN MEETING ON SOLAR PHYSICS: MAGNETIC FIELDS AND SOLAR PROCESSES, VOLS 1 AND 2, 1999, 448 : 1231 - 1238
  • [3] Faraday rotation and models for the plasma structure of the solar corona
    Mancuso, S
    Spangler, SR
    ASTROPHYSICAL JOURNAL, 2000, 539 (01): : 480 - 491
  • [4] DIFFERENTIAL ROTATION OF SOLAR ELECTRON CORONA
    HANSEN, RT
    HANSEN, SF
    LOOMIS, HG
    SOLAR PHYSICS, 1969, 10 (01) : 135 - &
  • [5] RIGID AND DIFFERENTIAL ROTATION OF SOLAR CORONA
    ANTONUCCI, E
    SVALGAARD, L
    SOLAR PHYSICS, 1974, 34 (01) : 3 - 10
  • [6] High-frequency Faraday rotation observations of the solar corona
    Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095, United States
    Planet. Space Sci., 11 (1562-1564):
  • [7] High-frequency Faraday rotation observations of the solar corona
    Jensen, Elizabeth A.
    Russell, Christopher T.
    PLANETARY AND SPACE SCIENCE, 2008, 56 (11) : 1562 - 1564
  • [8] DIFFERENTIAL ROTATION OF THE ULTRAVIOLET CORONA AT SOLAR MAXIMUM
    Mancuso, Salvatore
    Giordano, Silvio
    ASTROPHYSICAL JOURNAL, 2011, 729 (02):
  • [9] Two types of differential rotation of the solar corona
    Badalyan, Olga G.
    NEW ASTRONOMY, 2010, 15 (01) : 135 - 143
  • [10] Cyclic variations in the differential rotation of the solar corona
    Badalyan, O. G.
    Obridko, V. N.
    Sykora, J.
    ASTRONOMY REPORTS, 2006, 50 (04) : 312 - 324