An Extremal Class of Three-Dimensional Hyperbolic Affine Spheres

被引:0
|
作者
Marcus Kriele
Luc Vrancken
机构
[1] Katholieke Universiteit Leuven,Departement Wiskunde
[2] Technische Universität Berlin,Fachbereich Mathematik
来源
Geometriae Dedicata | 1999年 / 77卷
关键词
affine differential geometry; affine hyperspheres.;
D O I
暂无
中图分类号
学科分类号
摘要
In analogy to an inequality of Chen [2], Scharlach and co-workers [7] have found a new, optimal inequality for (equi-) affine spheres. We classify those three-dimensional hyperbolic affine spheres for which the corresponding equality is assumed. This complements the classification of the elliptic case [3].
引用
收藏
页码:239 / 252
页数:13
相关论文
共 50 条
  • [31] On a class of three-dimensional integrable Lagrangians
    Ferapontov, EV
    Khusnutdinova, KR
    Tsarev, SP
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 261 (01) : 225 - 243
  • [32] A class of auxetic three-dimensional lattices
    Cabras, Luigi
    Brun, Michele
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 91 : 56 - 72
  • [33] On a class of three-dimensional transshipment problems
    Khurana, Archana
    INTERNATIONAL JOURNAL OF SHIPPING AND TRANSPORT LOGISTICS, 2015, 7 (04) : 407 - 425
  • [34] A class of three-dimensional Ricci solitons
    Baird, Paul
    GEOMETRY & TOPOLOGY, 2009, 13 : 979 - 1015
  • [35] On a class of three-dimensional corner eddies
    P. N. Shankar
    Pramana, 1998, 51 : 489 - 503
  • [36] EXTREMAL PROPERTY OF SOLUTIONS TO A CLASS OF HYPERBOLIC EQUATIONS
    LERNER, ME
    DOKLADY AKADEMII NAUK SSSR, 1969, 184 (06): : 1281 - &
  • [37] Rheology and structure of polydisperse three-dimensional packings of spheres
    Cantor, David
    Azema, Emilien
    Sornay, Philippe
    Radjai, Farhang
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [38] Colloidal Organosilica Spheres for Three-Dimensional Confocal Microscopy
    Liu, Yanyan
    Yanagishima, Taiki
    Curran, Arran
    Edmond, Kazem V.
    Sacanna, Stefano
    Dullens, Roel P. A.
    LANGMUIR, 2019, 35 (24) : 7962 - 7969
  • [39] Expository remarks on three-dimensional gravity and hyperbolic invariants
    Bytsenko, A. A.
    Guimaraes, M. E. X.
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (22)
  • [40] Three-dimensional security: Layers, spheres, volumes, milieus
    Campbell, Elaine
    POLITICAL GEOGRAPHY, 2019, 69 : 10 - 21