High order iterative schemes for quadratic equations

被引:0
|
作者
Virginia Alarcón
Sergio Amat
Sonia Busquier
Fernando Manzano
机构
[1] Universidad Politécnica de Cartagena,Departamento de Matemática Aplicada y Estadística
来源
Numerical Algorithms | 2008年 / 48卷
关键词
Nonlinear quadratic equations; High order of convergence; Semilocal convergence; Fast multiresolution algorithms; Poisson’s equation; 49M15; 35J45;
D O I
暂无
中图分类号
学科分类号
摘要
High order iterative methods for quadratic equations are studied. A bi-parametric family that includes some well known iterative schemes is introduced. A unified semilocal convergence theorem is presented. The implementation and some applications to partial differential equations are finally discussed.
引用
收藏
相关论文
共 50 条
  • [21] ITERATIVE SCHEMES FOR HIGH ORDER COMPACT DISCRETIZATIONS TO THE EXTERIOR HELMHOLTZ EQUATION
    Erlangga, Yogi
    Turkel, Eli
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (03): : 647 - 660
  • [22] Fourth-Order Trapezoid Algorithm with Four Iterative Schemes for Nonlinear Integral Equations
    Nwaigwe, Chinedu
    Weli, Azubuike
    Dang Ngoc Hoang Thanh
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (07) : 2822 - 2837
  • [23] Iterative Solution Schemes for Quadratic DRM-MD
    Portapila, M.
    Power, H.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (06) : 1430 - 1459
  • [24] Two High Order Iterative Methods for Roots of Nonlinear Equations
    Nouri, Kazem
    Ranjbar, Hassan
    Torkzadeh, Leila
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (03): : 47 - 59
  • [25] Improved Iterative Methods for Solving High Order Polynomial Equations
    Gong, Dianxuan
    Wang, Ling
    Wei, Chuanan
    Peng, Yamian
    SMART MATERIALS AND INTELLIGENT SYSTEMS, PTS 1 AND 2, 2011, 143-144 : 1122 - +
  • [26] High-order splitting schemes for semilinear evolution equations
    Eskil Hansen
    Alexander Ostermann
    BIT Numerical Mathematics, 2016, 56 : 1303 - 1316
  • [27] Fast high order ADER schemes for linear hyperbolic equations
    Schwartzkopff, T
    Dumbser, M
    Munz, CD
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 197 (02) : 532 - 539
  • [28] High-Order Schemes for Nonlinear Fractional Differential Equations
    Alsayyed, Omar
    Awawdeh, Fadi
    Al-Shara', Safwan
    Rawashdeh, Edris
    FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [29] High-order splitting schemes for semilinear evolution equations
    Hansen, Eskil
    Ostermann, Alexander
    BIT NUMERICAL MATHEMATICS, 2016, 56 (04) : 1303 - 1316
  • [30] A bound on the degree of schemes defined by quadratic equations
    Alzati, Alberto
    Carlos Sierra, Jose
    FORUM MATHEMATICUM, 2012, 24 (04) : 733 - 750