High order iterative schemes for quadratic equations

被引:0
|
作者
Virginia Alarcón
Sergio Amat
Sonia Busquier
Fernando Manzano
机构
[1] Universidad Politécnica de Cartagena,Departamento de Matemática Aplicada y Estadística
来源
Numerical Algorithms | 2008年 / 48卷
关键词
Nonlinear quadratic equations; High order of convergence; Semilocal convergence; Fast multiresolution algorithms; Poisson’s equation; 49M15; 35J45;
D O I
暂无
中图分类号
学科分类号
摘要
High order iterative methods for quadratic equations are studied. A bi-parametric family that includes some well known iterative schemes is introduced. A unified semilocal convergence theorem is presented. The implementation and some applications to partial differential equations are finally discussed.
引用
下载
收藏
相关论文
共 50 条
  • [1] High order iterative schemes for quadratic equations
    Alarcon, Virginia
    Amat, Sergio
    Busquier, Sonia
    Manzano, Fernando
    NUMERICAL ALGORITHMS, 2008, 48 (04) : 373 - 381
  • [2] Solving Symmetric Algebraic Riccati Equations with High Order Iterative Schemes
    Hernandez-Veron, M. A.
    Romero, N.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [3] Solving Symmetric Algebraic Riccati Equations with High Order Iterative Schemes
    M. A. Hernández-Verón
    N. Romero
    Mediterranean Journal of Mathematics, 2018, 15
  • [4] Semilocal convergence of a sixth order iterative method for quadratic equations
    Amat, S.
    Hernandez, M. A.
    Romero, N.
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (07) : 833 - 841
  • [5] HIGHER-ORDER ITERATIVE SOLUTION OF QUADRATIC OPERATOR EQUATIONS
    LEIPNIK, RB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (05): : 777 - &
  • [6] Dynamics of Iterative Schemes for Quadratic Polynomial
    Goyal, Komal
    Prasad, Bhagwati
    ADVANCEMENT IN MATHEMATICAL SCIENCES, 2017, 1897
  • [7] An adaptive version of a fourth-order iterative method for quadratic equations
    Amat, S
    Busquier, S
    Gutiérrez, JM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 191 (02) : 259 - 268
  • [8] Higher order iterative schemes for nonlinear equations using decomposition technique
    Shah, Farooq Ahmed
    Noor, Muhammad Aslam
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 414 - 423
  • [9] Three novel fifth-order iterative schemes for solving nonlinear equations
    Liu, Chein-Shan
    El-Zahar, Essam R.
    Chang, Chih-Wen
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 187 : 282 - 293
  • [10] High Order Relaxation Schemes on Phase Transition Equations
    叶茂
    Journal of Electronic Science and Technology, 2004, (02) : 48 - 52