On the functional form of convex underestimators for twice continuously differentiable functions

被引:0
|
作者
Christodoulos A. Floudas
Vladik Kreinovich
机构
[1] Princeton University,Department of Chemical Engineering
[2] University of Texas at El Paso,Department of Computer Science
来源
Optimization Letters | 2007年 / 1卷
关键词
Global Optimization; Differentiable Function; Global Optimization Method; MINLP Problem; Deterministic Global Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
The optimal functional form of convex underestimators for general twice continuously differentiable functions is of major importance in deterministic global optimization. In this paper, we provide new theoretical results that address the classes of optimal functional forms for the convex underestimators. These are derived based on the properties of shift-invariance and sign- invariance.
引用
收藏
页码:187 / 192
页数:5
相关论文
共 50 条
  • [41] Approximations of Jensen divergence for twice differentiable functions
    Eder Kikianty
    Sever S Dragomir
    Isia T Dintoe
    David Sherwell
    [J]. Journal of Inequalities and Applications, 2013
  • [42] New parameterized inequalities for twice differentiable functions
    Budak, Huseyin
    Kara, Hasan
    Hezenci, Fatih
    Sarikaya, Mehmet Zeki
    [J]. FILOMAT, 2023, 37 (12) : 3737 - 3753
  • [43] Jensen type inequalities for twice differentiable functions
    El Frissi, Abdallah
    Belaidi, Benharrat
    Lareuch, Zinelaabidine
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2012, 5 (05): : 350 - 356
  • [44] Approximations of Jensen divergence for twice differentiable functions
    Kikianty, Eder
    Dragomir, Sever S.
    Dintoe, Isia T.
    Sherwell, David
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013, : 1 - 12
  • [45] Global Approximation of Convex Functions by Differentiable Convex Functions on Banach Spaces
    Azagra, Daniel
    Mudarra, Carlos
    [J]. JOURNAL OF CONVEX ANALYSIS, 2015, 22 (04) : 1197 - 1205
  • [46] Exploration of Hermite-Hadamard-Type Integral Inequalities for Twice Differentiable h-Convex Functions
    Vivas-Cortez, Miguel
    Samraiz, Muhammad
    Ghaffar, Muhammad Tanveer
    Naheed, Saima
    Rahman, Gauhar
    Elmasry, Yasser
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [47] BERNSTEIN PROBLEM AND ALGEBRAS OF CONTINUOUSLY DIFFERENTIABLE FUNCTIONS
    ZAPATA, GI
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (01): : 70 - &
  • [48] Approximations of differentiable convex functions on arbitrary convex polytopes
    Guessab, Allal
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 240 : 326 - 338
  • [49] CUBE FORMULAS ON SPACES OF CONTINUOUSLY DIFFERENTIABLE FUNCTIONS
    RAMAZANOV, MD
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1975, 16 (06) : 969 - 985
  • [50] SPACE OF H-CONTINUOUSLY DIFFERENTIABLE FUNCTIONS
    WILDENHAIN, G
    [J]. MATHEMATISCHE NACHRICHTEN, 1971, 50 (1-6) : 217 - +