On the stability of the Lp-norm of the Riemannian curvature tensor

被引:0
|
作者
Soma Maity
机构
[1] Indian Institute of Science,Department of Mathematics
来源
关键词
Riemannian functional; critical point; stability; local minima.; 53C21, 58E11, 58C15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Riemannian functional Rp(g)=∫M|R(g)|pdvg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {R}_{p}(g)={\int }_{M}|R(g)|^{p}dv_{g}$\end{document} defined on the space of Riemannian metrics with unit volume on a closed smooth manifold M where R(g) and dvg denote the corresponding Riemannian curvature tensor and volume form and p ∈ (0, ∞). First we prove that the Riemannian metrics with non-zero constant sectional curvature are strictly stable for Rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {R}_{p}$\end{document} for certain values of p. Then we conclude that they are strict local minimizers for Rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {R}_{p}$\end{document} for those values of p. Finally generalizing this result we prove that product of space forms of same type and dimension are strict local minimizer for Rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {R}_{p}$\end{document} for certain values of p.
引用
收藏
页码:383 / 409
页数:26
相关论文
共 50 条
  • [1] On the stability of the Lp-norm of the Riemannian curvature tensor
    Maity, Soma
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (03): : 383 - 409
  • [2] Conformally flat Riemannian manifolds with finite LP-norm curvature
    Fu, Hai-Ping
    Peng, Jian-Ke
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (05) : 1903 - 1912
  • [3] Solving lp-norm regularization with tensor kernels
    Salzo, Saverio
    Suykens, Johan A. K.
    Rosasco, Lorenzo
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [4] Complete Manifolds with Harmonic Curvature and Finite Lp-Norm Curvature
    Haiping FU
    Pingping DAN
    Shulin SONG
    [J]. Journal of Mathematical Research with Applications, 2017, 37 (03) : 335 - 344
  • [5] Robust and Sparse Tensor Analysis with Lp-norm Maximization
    Tang, Ganyi
    Lu, Guifu
    Wang, Zhongqun
    [J]. PROCEEDINGS OF 2017 8TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2017), 2017, : 751 - 756
  • [6] Einstein manifolds with finite LP-norm of the Weyl curvature
    Fu, Hai-Ping
    Xiao, Li-Qun
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 53 : 293 - 305
  • [7] AN LP-NORM INEQUALITY
    WU, PY
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (06): : 411 - 412
  • [8] Joint Weighted Tensor Schatten p-Norm and Tensor lp-Norm Minimization for Image Denoising
    Zhang, Xiaoqin
    Zheng, Jingjing
    Yan, Yufang
    Zhao, Li
    Jiang, Runhua
    [J]. IEEE ACCESS, 2019, 7 : 20273 - 20280
  • [9] LP-NORM DECONVOLUTION
    DEBEYE, HWJ
    VANRIEL, P
    [J]. GEOPHYSICAL PROSPECTING, 1990, 38 (04) : 381 - 403
  • [10] Martingale transforms and Lp-norm estimates of Riesz transforms on complete Riemannian manifolds
    Xiang-Dong Li
    [J]. Probability Theory and Related Fields, 2008, 141 : 247 - 281