Martingale transforms and Lp-norm estimates of Riesz transforms on complete Riemannian manifolds

被引:0
|
作者
Xiang-Dong Li
机构
[1] Université Paul Sabatier,Laboratoire de Statistique et Probabilités
来源
关键词
Primary: 53C21; 58J65; Secondary: 58J40; 60J65; Riesz transforms; Bakry–Emery Ricci curvature; Martingale transforms; Burkholder sharp ; -inequality for martingale subordination;
D O I
暂无
中图分类号
学科分类号
摘要
Under the condition that the Bakry–Emery Ricci curvature is bounded from below, we prove a probabilistic representation formula of the Riesz transforms associated with a symmetric diffusion operator on a complete Riemannian manifold. Using the Burkholder sharp Lp-inequality for martingale transforms, we obtain an explicit and dimension-free upper bound of the Lp-norm of the Riesz transforms on such complete Riemannian manifolds for all 1 < p < ∞. In the Euclidean and the Gaussian cases, our upper bound is asymptotically sharp when p→ 1 and when p→ ∞.
引用
收藏
页码:247 / 281
页数:34
相关论文
共 50 条