Mixed Convection Boundary-layer Flow Past a Vertical Surface Embedded in a Porous Medium: Exponential Case

被引:0
|
作者
Norshafira Ramli
J. H. Merkin
I. Pop
机构
[1] Universiti Sains Malaysia (USM),School of Mathematical Sciences
[2] University of Leeds,Department of Applied Mathematics
[3] Babeş-Bolyai University,Department of Mathematics
来源
Transport in Porous Media | 2015年 / 106卷
关键词
Boundary-layer flow; Porous medium; Mixed convection; Exponential boundary condition;
D O I
暂无
中图分类号
学科分类号
摘要
The steady, mixed convection boundary-layer flow on a vertical surface is considered when there is either an exponentially increasing/decreasing surface temperature with a constant outer flow or an exponentially increasing/decreasing outer flow with a constant surface temperature, characterized by the mixed convection parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. A different behaviour is observed in aiding flow or in opposing flow, and whether the boundary condition is increasing or decreasing. An exponentially decreasing surface temperature sets up a flow at large distances driven by the outer flow with the temperature field decreasing at a rate proportional to x-3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{-3/2}$$\end{document}. An exponentially increasing surface temperature gives rise to a different behaviour for aiding and opposing flow. For aiding flow and temperature field increases as ex\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{e}^x$$\end{document}. For opposing flow the solution breaks down at a finite distance from the leading edge effectively where the wall velocity goes to zero at -logλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\log \lambda $$\end{document}. With an exponentially decreasing surface temperature for aiding flow the solution evolves to the free convection limit For opposing flow the solution breaks down at a finite distance from the leading edge, effectively where the wall velocity goes to zero. For an exponentially increasing outer flow the solution evolves to the forced convection limit.
引用
收藏
页码:425 / 438
页数:13
相关论文
共 50 条