The Equivalence Problem for the Class of Generalized Abel Equations

被引:0
|
作者
O. I. Morozov
机构
[1] Snezhinsk Institute of Physics and Technology at Moscow State Institute of Physics and Engineering (Technical University),
来源
Differential Equations | 2003年 / 39卷
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Functional Equation; Equivalence Problem;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:460 / 461
页数:1
相关论文
共 50 条
  • [21] A Generalized Barycentric Rational Interpolation Method for Generalized Abel Integral Equations
    Azin H.
    Mohammadi F.
    Baleanu D.
    International Journal of Applied and Computational Mathematics, 2020, 6 (5)
  • [22] Generalized Abel functional equations and numerical representability of semiorders
    Abrisqueta, Francisco J.
    Carlos Candeal, Juan
    Catalan, Raquel G.
    De Miguel, Juan R.
    Indurain, Esteban
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (3-4): : 557 - 568
  • [23] Numerical Schemes for the Generalized Abel’s Integral Equations
    Kumar K.
    Pandey R.K.
    Sharma S.
    International Journal of Applied and Computational Mathematics, 2018, 4 (2)
  • [24] Collocation method for Generalized Abel's integral equations
    Pandey, Rajesh K.
    Sharma, Shiva
    Kumar, Kamlesh
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 302 : 118 - 128
  • [26] A new operational method to solve Abel's and generalized Abel's integral equations
    Sadri, K.
    Amini, A.
    Cheng, C.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 317 : 49 - 67
  • [27] ON THE EQUIVALENCE OF THE ABEL EQUATION
    Zhang Shanlin Zhou Zhengxin (Dept. of Math.
    Annals of Differential Equations, 2006, (03) : 461 - 466
  • [28] On the Generalized Cauchy Problem for One Class of Differential Equations of Infinite Order
    V. V. Horodets’kyi
    O. V. Martynyuk
    R. I. Petryshyn
    Ukrainian Mathematical Journal, 2020, 72 : 1030 - 1050
  • [29] Generalized Pell's equations and Weber's class number problem
    Yoshizaki, Hyuga
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (02): : 373 - 391
  • [30] NONLOCAL PROBLEM FOR ONE CLASS EQUATIONS OF DIFFUSION IN SPACE OF GENERALIZED FUNCTIONS
    Drin, Ya M.
    ELEVENTH INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 2013, 9066