A Wave Inequality with Convolution Nonlinearities

被引:0
|
作者
Mohamed Jleli
Bessem Samet
机构
[1] King Saud University,Department of Mathematics, College of Science
来源
关键词
Wave inequalities; nonlinear convolution terms; existence; nonexistence; Primary 35R45; 35A01; Secondary 35L05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a wave inequality in an exterior domain of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{N}$$\end{document}, involving the product of two nonlinear convolution terms. The problem is considered under an inhomogeneous Dirichlet-type boundary condition. We establish sufficient conditions depending on the parameters of the problem, under which we have existence/nonexistence of weak solutions.
引用
收藏
相关论文
共 50 条
  • [31] Convolution Quadrature for Wave Simulations
    Hassell, Matthew
    Sayas, Francisco-Javier
    [J]. NUMERICAL SIMULATION IN PHYSICS AND ENGINEERING, 2016, 9 : 71 - 159
  • [32] EFFECTS OF NONLINEARITIES ON WAVE POWER ESTIMATES
    HUDSPETH, RT
    [J]. JOURNAL OF THE POWER DIVISION-ASCE, 1977, 103 (01): : 51 - 64
  • [33] Fractional magnetic Schrodinger-Kirchhoff problems with convolution and critical nonlinearities
    Liang, Sihua
    Repovs, Dusan D.
    Zhang, Binlin
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2473 - 2490
  • [34] Soliton Solutions for Quasilinear Schrodinger Equations Involving Convolution and Critical Nonlinearities
    Liang, Sihua
    Zhang, Binlin
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
  • [35] WAVE-EQUATIONS WITH LOGARITHMIC NONLINEARITIES
    BIALYNICKIBIRULA, I
    MYCIELSKI, J
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1975, 23 (04): : 461 - 466
  • [36] A maximal inequality for pth power of stochastic convolution integrals
    Erfan Salavati
    Bijan Z Zangeneh
    [J]. Journal of Inequalities and Applications, 2016
  • [37] A convolution inequality for entropy over Z2
    Jog, Varun
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017,
  • [38] A maximal inequality for pth power of stochastic convolution integrals
    Salavati, Erfan
    Zangeneh, Bijan Z.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [39] On the convex infimum convolution inequality with optimal cost function
    Strzelecka, Marta
    Strzelecki, Michal
    Tkocz, Tomasz
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (02): : 903 - 915
  • [40] CONVOLUTION AND THE KINEMATIC WAVE-EQUATIONS
    HJELMFELT, AT
    [J]. JOURNAL OF HYDROLOGY, 1984, 75 (1-4) : 301 - 309