Existence of positive solutions to a higher order singular boundary value problem with fractional q-derivatives

被引:0
|
作者
John R. Graef
Lingju Kong
机构
[1] University of Tennessee at Chattanooga,Department of Mathematics
关键词
fractional ; -calculus; boundary value problems; positive solutions; existence; Primary 39A13, 34B18, 34B16, 34A08;
D O I
暂无
中图分类号
学科分类号
摘要
The authors study the singular boundary value problem with fractional q-derivatives \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\begin{gathered} - (D_q^\nu u)(t) = f(t,u),t \in (0,1), \hfill \\ (D_q^i u)(0) = 0,i = 0,...,n - 2,(D_q u)(1) = \sum\limits_{j = 1}^m {a_j (D_q u)(t_j ) + \lambda ,} \hfill \\ \end{gathered} $\end{document}, where q ∈ (0, 1), m ≥ 1 and n ≥ 2 are integers, n − 1 < ν ≤ n, λ ≥ 0 is a parameter, f: (0, 1] × (0,∞) → [0,∞) is continuous, ai ≥ 0 and ti ∈ (0, 1) for i = 1, …,m, and Dqν is the q-derivative of Riemann-Liouville type of order ν. Sufficient conditions are obtained for the existence of positive solutions. Their analysis is mainly based on a nonlinear alternative of Leray-Schauder.
引用
收藏
页码:695 / 708
页数:13
相关论文
共 50 条
  • [41] Existence of Positive Solutions for a Nonlinear Higher-Order Multipoint Boundary Value Problem
    Zhao, Min
    Sun, Yongping
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [42] FRACTIONAL HYBRID INITIAL VALUE PROBLEM FEATURING q-DERIVATIVES
    Baleanu, D.
    Darzi, R.
    Agheli, B.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (02): : 229 - 238
  • [43] Hybrid Initial Value Problems of Fractional Order with q-Derivatives
    Mahmoudi Matankolae, Roja
    Agheli, Bahram
    Ghobadi, Sirous
    Darzi, Rahmat
    Firozja, Mohammad Adabitabar
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [44] POSITIVE SOLUTIONS OF NONLOCAL BOUNDARY VALUE PROBLEM FOR HIGHER ORDER FRACTIONAL DIFFERENTIAL SYSTEM
    Rehman, Mujeeb Ur
    Khan, Rahmat Ali
    Eloe, Paul W.
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2011, 20 (2-3): : 169 - 182
  • [45] POSITIVE SOLUTIONS FOR A SINGULAR THIRD ORDER BOUNDARY VALUE PROBLEM
    Hederson, Johnny
    Luca, Rodica
    Nelms, Charles, Jr.
    Yang, Aijun
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2015, 7 (04): : 437 - 447
  • [46] Positive solutions for singular boundary value problem of second order
    Liu, JQ
    Zeng, P
    Xiong, M
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2004, 25 (03) : 383 - 392
  • [47] Positive Solutions For A Singular Second Order Boundary Value Problem
    Zhou, Wen-Shu
    [J]. APPLIED MATHEMATICS E-NOTES, 2009, 9 : 154 - 159
  • [48] Existence and Uniqueness of Positive Solutions for a Singular Second-Order Integral Boundary Value Problem
    Caballero, Josefa
    Lopez, Belen
    Sadarangani, Kishin
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2021, 40 (01): : 51 - 65
  • [49] Existence of a positive solution for a singular fractional boundary value problem with fractional boundary conditions using convolution and lower order problems
    LYONS, Jeffrey W.
    NEUGEBAUER, Jeffrey T.
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) : 125 - 138
  • [50] POSITIVE SOLUTIONS FOR SINGULAR BOUNDARY VALUE PROBLEM OF SECOND ORDER
    LIU JIAQUAN
    ZENG PING’AN
    XIONG MING School of Mathematical Science
    [J]. Chinese Annals of Mathematics,Series B, 2004, (03) : 383 - 392