On semicomplete finite p-groups

被引:0
|
作者
Rasoul Soleimani
机构
[1] Payame Noor University,Department of Mathematics
来源
Ricerche di Matematica | 2023年 / 72卷
关键词
Automorphism group; Finite ; -group; Camina pair; Primary 20D45; Secondary 20D15;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group and N be a non-trivial proper normal subgroup of G. The pair (G, N) is called a Camina pair if xN⊆xG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xN\subseteq x^G$$\end{document} for all x∈G\N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in G\setminus N$$\end{document}, where xG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^G$$\end{document} denotes the conjugacy class of x in G. Also let AutG′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Aut}^{G'}(G)$$\end{document} denote the group of all automorphisms of G fixing G/G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G/G'$$\end{document} elementwise. A group G is called semicomplete if AutG′(G)=Inn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Aut}^{G'}(G)=\mathrm {Inn}(G)$$\end{document}. In this paper, using the notion of Frattinian groups, we give a necessary and sufficient condition for a finite p-group G such that (G, Z(G)) is a Camina pair to be semicomplete.
引用
收藏
页码:417 / 422
页数:5
相关论文
共 50 条
  • [1] Semicomplete Finite p-Groups
    Attar, M. Shabani
    [J]. ALGEBRA COLLOQUIUM, 2011, 18 : 937 - 944
  • [2] On semicomplete finite p-groups
    Soleimani, Rasoul
    [J]. RICERCHE DI MATEMATICA, 2023, 72 (01) : 417 - 422
  • [3] Semicomplete Finite p-Groups of Class 2
    Attar, M. Shabani
    [J]. ALGEBRA COLLOQUIUM, 2016, 23 (04) : 651 - 656
  • [4] Finite p-groups
    Starostin A.I.
    [J]. Journal of Mathematical Sciences, 1998, 88 (4) : 559 - 585
  • [5] FINITE P-GROUPS
    HOBBY, C
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (02): : A336 - A336
  • [6] GROUPS OF AUTOMORPHISMS OF FINITE P-GROUPS
    BOROVIK, AV
    KHUKHRO, EI
    [J]. MATHEMATICAL NOTES, 1976, 19 (3-4) : 245 - 255
  • [7] FINITE VALUATED P-GROUPS
    BEERS, D
    HUNTER, R
    WALKER, E
    [J]. LECTURE NOTES IN MATHEMATICS, 1983, 1006 : 471 - 507
  • [8] Finite morphic p-groups
    Caranti, A.
    Scoppola, C. M.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (10) : 4635 - 4641
  • [9] On the abundance of finite p-groups
    Jaikin-Zapirain, A
    [J]. JOURNAL OF GROUP THEORY, 2000, 3 (03) : 225 - 231
  • [10] On subgroups of finite p-groups
    Yakov Berkovich
    Zvonimir Janko
    [J]. Israel Journal of Mathematics, 2009, 171 : 29 - 49