共 50 条
On semicomplete finite p-groups
被引:0
|作者:
Rasoul Soleimani
机构:
[1] Payame Noor University,Department of Mathematics
来源:
关键词:
Automorphism group;
Finite ;
-group;
Camina pair;
Primary 20D45;
Secondary 20D15;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let G be a finite group and N be a non-trivial proper normal subgroup of G. The pair (G, N) is called a Camina pair if xN⊆xG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$xN\subseteq x^G$$\end{document} for all x∈G\N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x\in G\setminus N$$\end{document}, where xG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x^G$$\end{document} denotes the conjugacy class of x in G. Also let AutG′(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {Aut}^{G'}(G)$$\end{document} denote the group of all automorphisms of G fixing G/G′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G/G'$$\end{document} elementwise. A group G is called semicomplete if AutG′(G)=Inn(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {Aut}^{G'}(G)=\mathrm {Inn}(G)$$\end{document}. In this paper, using the notion of Frattinian groups, we give a necessary and sufficient condition for a finite p-group G such that (G, Z(G)) is a Camina pair to be semicomplete.
引用
收藏
页码:417 / 422
页数:5
相关论文