On semicomplete finite p-groups

被引:0
|
作者
Soleimani, Rasoul [1 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
关键词
Automorphism group; Finite p-group; Camina pair; NONINNER AUTOMORPHISMS;
D O I
10.1007/s11587-022-00740-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group and N be a non-trivial proper normal subgroup of G. The pair (G, N) is called a Camina pair if xN subset of x(G) for all x is an element of G \ N, where x(G) denotes the conjugacy class of x in G. Also let Aut(G') (G) denote the group of all automorphisms of G fixing G/G' elementwise. A group G is called semicomplete if Aut(G') (G) = Inn(G). In this paper, using the notion of Frattinian groups, we give a necessary and sufficient condition for a finite p-group G such that (G, Z(G)) is a Camina pair to be semicomplete.
引用
收藏
页码:417 / 422
页数:6
相关论文
共 50 条
  • [1] Semicomplete Finite p-Groups
    Attar, M. Shabani
    ALGEBRA COLLOQUIUM, 2011, 18 : 937 - 944
  • [2] On semicomplete finite p-groups
    Rasoul Soleimani
    Ricerche di Matematica, 2023, 72 : 417 - 422
  • [3] Semicomplete Finite p-Groups of Class 2
    Attar, M. Shabani
    ALGEBRA COLLOQUIUM, 2016, 23 (04) : 651 - 656
  • [4] Finite p-groups
    Starostin A.I.
    Journal of Mathematical Sciences, 1998, 88 (4) : 559 - 585
  • [5] FINITE P-GROUPS
    HOBBY, C
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (02): : A336 - A336
  • [6] GROUPS OF AUTOMORPHISMS OF FINITE P-GROUPS
    BOROVIK, AV
    KHUKHRO, EI
    MATHEMATICAL NOTES, 1976, 19 (3-4) : 245 - 255
  • [7] Finite morphic p-groups
    Caranti, A.
    Scoppola, C. M.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (10) : 4635 - 4641
  • [8] FINITE VALUATED P-GROUPS
    BEERS, D
    HUNTER, R
    WALKER, E
    LECTURE NOTES IN MATHEMATICS, 1983, 1006 : 471 - 507
  • [9] On the abundance of finite p-groups
    Jaikin-Zapirain, A
    JOURNAL OF GROUP THEORY, 2000, 3 (03) : 225 - 231
  • [10] On subgroups of finite p-groups
    Berkovich, Yakov
    Janko, Zvonimir
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 171 (01) : 29 - 49