Quantum Incompressibility and Razumov Stroganov Type Conjectures

被引:0
|
作者
Vincent Pasquier
机构
[1] C.E.A/Saclay,Service de Physique Théorique
来源
Annales Henri Poincaré | 2006年 / 7卷
关键词
Wave Function; Partition Function; Domain Wall; Transfer Matrix; Ergodic Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a correspondence between polynomial representations of the Temperley and Lieb algebra and certain deformations of the Quantum Hall Effect wave functions. When the deformation parameter is a third root of unity, the representation degenerates and the wave functions coincide with the domain wall boundary condition partition function appearing in the conjecture of A.V. Razumov and Y.G. Stroganov. In particular, this gives a proof of the identification of the sum of the entries of the O(n) transfer matrix and a six vertex-model partition function, alternative to that of P. Di Francesco and P. Zinn-Justin.
引用
收藏
页码:397 / 421
页数:24
相关论文
共 50 条
  • [11] Proof of the Razumov-Stroganov conjecture for some infinite families of link patterns
    Zinn-Justin, P.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [12] On Baxter's Q operator of the higher spin XXZ chain at the Razumov-Stroganov point
    Motegi, Kohei
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
  • [13] Boundary qKZ equation and generalized Razumov-Stroganov sum rules for open IRF models
    Di Francesco, P
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 57 - 74
  • [14] When finite-size corrections vanish: The S=1/2 XXZ model and the Razumov-Stroganov state
    Banchi, Leonardo
    Colomo, Filippo
    Verrucchi, Paola
    [J]. PHYSICAL REVIEW A, 2009, 80 (02):
  • [15] Eigenvectors of Open Bazhanov-Stroganov Quantum Chain
    Iorgov, Nikolai
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
  • [16] The local nature of incompressibility of quantum Hall effect
    Kendirlik, E. M.
    Sirt, S.
    Kalkan, S. B.
    Ofek, N.
    Umansky, V.
    Siddiki, A.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [17] The local nature of incompressibility of quantum Hall effect
    E. M. Kendirlik
    S. Sirt
    S. B. Kalkan
    N. Ofek
    V. Umansky
    A. Siddiki
    [J]. Nature Communications, 8
  • [18] Schanuel type conjectures and disjointness
    Broudy, Isaac A.
    Eterovic, Sebastian
    [J]. RAMANUJAN JOURNAL, 2023, 62 (03): : 781 - 795
  • [19] Schanuel type conjectures and disjointness
    Isaac A. Broudy
    Sebastian Eterović
    [J]. The Ramanujan Journal, 2023, 62 : 781 - 795
  • [20] Remarks on the Additivity Conjectures for Quantum Channels
    King, Christopher
    [J]. ENTROPY AND THE QUANTUM, 2010, 529 : 177 - 188