A wave breaking criterion for a modified periodic two-component Camassa-Holm system

被引:0
|
作者
Ying Wang
机构
[1] Sichuan University of Science and Engineering,School of Science
关键词
a modified periodic two-component Camassa-Holm system; wave-breaking criterion; localization analysis; 35D05; 35G25; 35L05; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a wave-breaking criterion of strong solutions is acquired in the Soblev space Hs(S)×Hs−1(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{s}(\mathbb{S})\times H^{s-1}(\mathbb{S})$\end{document} with s>32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s>\frac{3}{2}$\end{document} by employing the localization analysis in the transport equation theory, which is different from that of the two-component Camassa-Holm system.
引用
收藏
相关论文
共 50 条
  • [31] Low-regularity solutions of the periodic modified two-component Camassa-Holm equation
    Xia, Li-meng
    Tian, Lixin
    Shen, Caixia
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)
  • [32] The local well-posedness and global solution for a modified periodic two-component Camassa-Holm system
    Guo, Yunxi
    Lai, Shaoyong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 413 (02) : 641 - 647
  • [33] Non-uniform dependence on initial data of a modified periodic two-component Camassa-Holm system
    Lv, Guangying
    Wang, Xiaohuan
    [J]. ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 2015, 95 (05): : 444 - 456
  • [34] Singular solutions of a modified two-component Camassa-Holm equation
    Holm, Darryl D.
    Naraigh, Lennon O.
    Tronci, Cesare
    [J]. PHYSICAL REVIEW E, 2009, 79 (01)
  • [35] On the Blow-Up of Solutions of a Weakly Dissipative Modified Two-Component Periodic Camassa-Holm System
    Mi, Yongsheng
    Mu, Chunlai
    Tao, Weian
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [36] Weak well-posedness for a modified two-component Camassa-Holm system
    Guan, Chunxia
    Wang, Jianming
    Meng, Yiping
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 178 : 247 - 265
  • [37] Lipschitz metric for conservative solutions of the modified two-component Camassa-Holm system
    Cai, Hong
    Tan, Zhong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):
  • [38] Wave-breaking criterion and global solution for a generalized periodic coupled Camassa-Holm system
    Guo, Yunxi
    Wang, Ying
    [J]. BOUNDARY VALUE PROBLEMS, 2014, : 1 - 21
  • [39] Wave-breaking criterion and global solution for a generalized periodic coupled Camassa-Holm system
    Yunxi Guo
    Ying Wang
    [J]. Boundary Value Problems, 2014
  • [40] Two-component generalizations of the Camassa-Holm equation
    Kuz'min, P. A.
    [J]. MATHEMATICAL NOTES, 2007, 81 (1-2) : 130 - 134