Free energy on the sphere for non-abelian gauge theories

被引:0
|
作者
Fabiana De Cesare
Lorenzo Di Pietro
Marco Serone
机构
[1] Università di Trieste,Dipartimento di Fisica
[2] INFN,undefined
[3] Sezione di Trieste,undefined
[4] SISSA,undefined
关键词
Field Theories in Higher Dimensions; Field Theories in Lower Dimensions; Renormalization Group; Spontaneous Symmetry Breaking;
D O I
暂无
中图分类号
学科分类号
摘要
We compute the Sd partition function of the fixed point of non-abelian gauge theories in continuous d, using the ϵ-expansion around d = 4. We illustrate in detail the technical aspects of the calculation, including all the factors arising from the gauge-fixing procedure, and the method to deal with the zero-modes of the ghosts. We obtain the result up to NLO, i.e. including two-loop vacuum diagrams. Depending on the sign of the one-loop beta function, there is a fixed point with real gauge coupling in d > 4 or d < 4. In the first case we extrapolate to d = 5 to test a recently proposed construction of the UV fixed point of 5d SU(2) Yang-Mills via a susy-breaking deformation of the E1 SCFT. We find that the F theorem allows the proposed RG flow. In the second case we extrapolate to d = 3 to test whether QCD3 with gauge group SU(nc) and nf fundamental matter fields flows to a CFT or to a symmetry-breaking case. We find that within the regime with a real gauge coupling near d = 4 the CFT phase is always favored. For lower values of nf we compare the average of F between the two complex fixed points with its value at the symmetry-breaking phase to give an upper bound of the critical value nf∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {n}_f^{\ast } $$\end{document} below which the symmetry-breaking phase takes over.
引用
收藏
相关论文
共 50 条
  • [11] DIFFICULTIES IN FIXING THE GAUGE IN NON-ABELIAN GAUGE THEORIES
    SCIUTO, S
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 49 (02): : 181 - 191
  • [12] GAUGE COVARIANCE IN NON-ABELIAN GAUGE-THEORIES
    YOKOYAMA, KI
    TAKEDA, M
    MONDA, M
    PROGRESS OF THEORETICAL PHYSICS, 1980, 64 (04): : 1412 - 1424
  • [13] LANDAU GAUGE FORMALISM FOR NON-ABELIAN GAUGE THEORIES
    BRANDT, RA
    CHIU, NW
    YOUNG, K
    PHYSICAL REVIEW D, 1978, 18 (06) : 2068 - 2079
  • [14] Gauge protection in non-abelian lattice gauge theories
    Halimeh, Jad C.
    Lang, Haifeng
    Hauke, Philipp
    NEW JOURNAL OF PHYSICS, 2022, 24 (03):
  • [15] COMMENT ON GAUGE CONDITIONS IN NON-ABELIAN GAUGE THEORIES
    HSU, JP
    MAC, E
    LETTERE AL NUOVO CIMENTO, 1976, 17 (04): : 113 - 118
  • [16] INFRARED BEHAVIOR IN NON-ABELIAN GAUGE THEORIES
    FRENKEL, J
    MEULDERMANS, R
    MOHAMMAD, I
    TAYLOR, JC
    PHYSICS LETTERS B, 1976, 64 (02) : 211 - 212
  • [17] SCHWINGER MECHANISM IN NON-ABELIAN GAUGE THEORIES
    SARKAR, S
    NUCLEAR PHYSICS B, 1974, B 74 (03) : 387 - 396
  • [18] NON-ABELIAN GAUGE THEORIES OF STRONG INTERACTIONS
    WEINBERG, S
    PHYSICAL REVIEW LETTERS, 1973, 31 (07) : 494 - 497
  • [19] SYMMETRY BREAKING IN NON-ABELIAN GAUGE THEORIES
    KIBBLE, TWB
    PHYSICAL REVIEW, 1967, 155 (05): : 1554 - &
  • [20] POMERANCHUK SINGULARITY IN NON-ABELIAN GAUGE THEORIES
    KURAYEV, EA
    LIPATOV, LN
    FADIN, VS
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1977, 72 (02): : 377 - 389