Nonequilibrium charge-density-wave order beyond the thermal limit

被引:0
|
作者
J. Maklar
Y. W. Windsor
C. W. Nicholson
M. Puppin
P. Walmsley
V. Esposito
M. Porer
J. Rittmann
D. Leuenberger
M. Kubli
M. Savoini
E. Abreu
S. L. Johnson
P. Beaud
G. Ingold
U. Staub
I. R. Fisher
R. Ernstorfer
M. Wolf
L. Rettig
机构
[1] Fritz-Haber-Institut der Max-Planck-Gesellschaft,Geballe Laboratory for Advanced Materials and Department of Applied Physics
[2] Stanford University,Swiss Light Source
[3] Stanford Institute for Materials and Energy Sciences,Department of Physics
[4] SLAC National Accelerator Laboratory,Department of Physics and Fribourg Center for Nanomaterials
[5] Paul Scherrer Institut,Laboratory of Ultrafast Spectroscopy
[6] University of Zürich,undefined
[7] Institute for Quantum Electronics,undefined
[8] Physics Department,undefined
[9] ETH Zürich,undefined
[10] University of Fribourg,undefined
[11] ISIC,undefined
[12] Ecole Polytechnique Fédérale de Lausanne (EPFL),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The interaction of many-body systems with intense light pulses may lead to novel emergent phenomena far from equilibrium. Recent discoveries, such as the optical enhancement of the critical temperature in certain superconductors and the photo-stabilization of hidden phases, have turned this field into an important research frontier. Here, we demonstrate nonthermal charge-density-wave (CDW) order at electronic temperatures far greater than the thermodynamic transition temperature. Using time- and angle-resolved photoemission spectroscopy and time-resolved X-ray diffraction, we investigate the electronic and structural order parameters of an ultrafast photoinduced CDW-to-metal transition. Tracking the dynamical CDW recovery as a function of electronic temperature reveals a behaviour markedly different from equilibrium, which we attribute to the suppression of lattice fluctuations in the transient nonthermal phonon distribution. A complete description of the system’s coherent and incoherent order-parameter dynamics is given by a time-dependent Ginzburg-Landau framework, providing access to the transient potential energy surfaces.
引用
收藏
相关论文
共 50 条
  • [41] SOLITON MODEL OF CHARGE-DENSITY-WAVE DEPINNING
    BARDEEN, J
    TUCKER, JR
    LECTURE NOTES IN PHYSICS, 1985, 217 : 155 - 163
  • [42] CURRENT OSCILLATIONS IN CHARGE-DENSITY-WAVE TRANSPORT
    THORNE, RE
    LYONS, WG
    MILLER, JH
    LYDING, JW
    TUCKER, JR
    PHYSICAL REVIEW B, 1986, 34 (08): : 5988 - 5991
  • [43] TUNNELING THEORY OF CHARGE-DENSITY-WAVE DEPINNING
    BARDEEN, J
    PHYSICAL REVIEW LETTERS, 1980, 45 (24) : 1978 - 1980
  • [44] Gaussian solution of a charge-density-wave model
    Corberi, F.
    Physical Review B: Condensed Matter, 55 (15):
  • [45] Negative resistance in charge-density-wave materials
    Slot, E
    van der Zant, HSJ
    Zaitsev-Zotov, SV
    Artemenko, SN
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 2001, 11-2 : 123 - 130
  • [46] PHASE VORTICES IN CHARGE-DENSITY-WAVE CONDUCTORS
    MAKI, K
    HUANG, XZ
    PHYSICAL REVIEW B, 1988, 37 (15): : 8668 - 8673
  • [47] Thermoelectric transports in charge-density-wave systems
    Yoshimoto, H
    Kurihara, S
    Realizing Controllable Quantum States: MESOSCOPIC SUPERCONDUCTIVITY AND SPINTRONICS, 2005, : 67 - 72
  • [48] ELECTROMECHANICAL PROPERTIES OF CHARGE-DENSITY-WAVE CONDUCTORS
    SNEDDON, L
    PHYSICAL REVIEW LETTERS, 1986, 56 (11) : 1194 - 1197
  • [49] Gaussian solution of a charge-density-wave model
    Corberi, F
    PHYSICAL REVIEW B, 1997, 55 (15): : 9544 - 9549
  • [50] CHARGE-DENSITY-WAVE SATELLITE INTENSITY IN POTASSIUM
    GIULIANI, GF
    OVERHAUSER, AW
    PHYSICAL REVIEW B, 1980, 22 (08): : 3639 - 3643