A sharper stability bound of Fourier frames

被引:0
|
作者
Weifeng Su
Xingwei Zhou
机构
[1] Nankai University,Nankai Institute of Mathematics
关键词
42C15; Frame; Frame sequence; Fourier frame;
D O I
暂无
中图分类号
学科分类号
摘要
Given a real sequence {λn}n∈ℤ. Suppose that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ {e^{i\lambda _n x} } \right\}_{n \in \mathbb{Z}}$$ \end{document} is a frame for L2[−π, π] with bounds A, B. The problem is to find a positive constant L such that for any real sequence {μn}n∈ℤ with ¦μn −λn¦ ≤δ <L,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ {e^{i\mu _n x} } \right\}_{n \in \mathbb{Z}}$$ \end{document} is also a frame for L2[−π, π]. Balan [1] obtained\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$L_R = \tfrac{1}{4} - \tfrac{1}{\pi }$$ \end{document}arcsin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {\tfrac{1}{{\sqrt 2 }}\left( {1 - \sqrt {\tfrac{A}{B}} } \right)} \right)$$ \end{document}. This value is a good stability bound of Fourier frames because it covers Kadec's 1/4-theorem\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {L_R = \tfrac{1}{4}ifA = B} \right)$$ \end{document} and is better than\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$L_{DS} = \tfrac{1}{\pi }\ln \left( {1 + \sqrt {\tfrac{A}{B}} } \right)$$ \end{document} (see Duffin and Schaefer [3]). In this paper, a sharper estimate is given.
引用
收藏
页码:67 / 71
页数:4
相关论文
共 50 条
  • [31] On Asymptotic and Strict Monotonicity of a Sharper Lower Bound for Student's t Percentiles
    Gut, Allan
    Mukhopadhyay, Nitis
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2010, 12 (04) : 647 - 657
  • [32] Stability of walking frames
    Deathe, A. Barry
    Pardo, Richard D.
    Winter, David A.
    Hayes, Keith C.
    Russell-Smyth, Jennifer
    Journal of Rehabilitation Research & Development, 1996, 33 (01):
  • [33] Stability of Woven Frames
    Li, Xue-Bin
    Zhu, Yu-Can
    FRONTIERS IN PHYSICS, 2022, 10
  • [34] On the stability of Gabor frames
    Sun, WC
    Zhou, XW
    ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (03) : 181 - 191
  • [35] On stability of Banach frames
    Jain, Pawan Kumar
    Kaushik, Shiv Kumar
    Vashisht, Lalit Kumar
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (01) : 73 - 81
  • [36] Stability Analysis of the Frames
    Balaz, Ivan
    Kolekova, Yvona
    Aguero, Antonio
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [37] Stability of walking frames
    Deathe, AB
    Pardo, RD
    Winter, DA
    Hayes, KC
    RussellSmyth, J
    JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT, 1996, 33 (01): : 30 - 35
  • [38] A REMARK ON STABILITY OF FRAMES
    ZASLAVSK.A
    ISRAEL JOURNAL OF TECHNOLOGY, 1966, 4 (04): : 242 - &
  • [39] On Asymptotic and Strict Monotonicity of a Sharper Lower Bound for Student’s t Percentiles
    Allan Gut
    Nitis Mukhopadhyay
    Methodology and Computing in Applied Probability, 2010, 12 : 647 - 657
  • [40] Multiple Source Domain Adaptation: A Sharper Bound using Weighted Rademacher Complexity
    Liu, Jianwei
    Zhou, Jiajia
    Luo, Xionglin
    2015 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2015, : 546 - 553