A sharper stability bound of Fourier frames

被引:0
|
作者
Weifeng Su
Xingwei Zhou
机构
[1] Nankai University,Nankai Institute of Mathematics
关键词
42C15; Frame; Frame sequence; Fourier frame;
D O I
暂无
中图分类号
学科分类号
摘要
Given a real sequence {λn}n∈ℤ. Suppose that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ {e^{i\lambda _n x} } \right\}_{n \in \mathbb{Z}}$$ \end{document} is a frame for L2[−π, π] with bounds A, B. The problem is to find a positive constant L such that for any real sequence {μn}n∈ℤ with ¦μn −λn¦ ≤δ <L,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ {e^{i\mu _n x} } \right\}_{n \in \mathbb{Z}}$$ \end{document} is also a frame for L2[−π, π]. Balan [1] obtained\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$L_R = \tfrac{1}{4} - \tfrac{1}{\pi }$$ \end{document}arcsin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {\tfrac{1}{{\sqrt 2 }}\left( {1 - \sqrt {\tfrac{A}{B}} } \right)} \right)$$ \end{document}. This value is a good stability bound of Fourier frames because it covers Kadec's 1/4-theorem\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {L_R = \tfrac{1}{4}ifA = B} \right)$$ \end{document} and is better than\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$L_{DS} = \tfrac{1}{\pi }\ln \left( {1 + \sqrt {\tfrac{A}{B}} } \right)$$ \end{document} (see Duffin and Schaefer [3]). In this paper, a sharper estimate is given.
引用
收藏
页码:67 / 71
页数:4
相关论文
共 50 条
  • [1] A sharper stability bound of Fourier frames
    Su, WF
    Zhou, XW
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (01) : 67 - 71
  • [2] Stability of frames generated by nonlinear Fourier atoms
    Chen, QH
    Li, LQ
    Qian, T
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2005, 3 (04) : 465 - 476
  • [3] Stability theorems for Fourier frames and wavelet Riesz bases
    Radu Balan
    Journal of Fourier Analysis and Applications, 1997, 3 : 499 - 504
  • [4] Stability theorems for Fourier frames and wavelet Riesz bases
    Balan, R
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (05) : 499 - 504
  • [5] Sharper bounds on the Fourier concentration of DNFs
    Lecomte, Victor
    Tan, Li-Yang
    2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 930 - 941
  • [6] Fourier frames
    Ortega-Cerdà, J
    Seip, K
    ANNALS OF MATHEMATICS, 2002, 155 (03) : 789 - 806
  • [7] Sharper uncertainty principles for the windowed Fourier transform
    Liu, Ming-Sheng
    Kou, Kit Ian
    Morais, Joao
    Dang, Pei
    JOURNAL OF MODERN OPTICS, 2015, 62 (01) : 46 - 55
  • [8] On a sharper bound on the stability of non-autonomous Schrödinger equations and applications to quantum control
    Balmaseda, Aitor
    Lonigro, Davide
    Perez-Pardo, Juan Manuel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (08)
  • [9] A sharper lower bound on Rankin's constant
    Li, Kang
    Xiao, Fengjun
    Zhou, Bingpeng
    Wen, Jinming
    INFORMATION PROCESSING LETTERS, 2023, 182
  • [10] A sharper bound of the Hotelling-Solomons inequality
    Maruyama, Yuzo
    STAT, 2024, 13 (03):