P-splines regression smoothing and difference type of penalty

被引:0
|
作者
I. Gijbels
A. Verhasselt
机构
[1] Katholieke Universiteit Leuven,Department of Mathematics and Leuven Statistics Research Center (LStat)
来源
Statistics and Computing | 2010年 / 20卷
关键词
Akaike’s information criterion; B-splines; Difference penalty; Generalized linear modelling; Penalized regression; Smoothing;
D O I
暂无
中图分类号
学科分类号
摘要
P-splines regression provides a flexible smoothing tool. In this paper we consider difference type penalties in a context of nonparametric generalized linear models, and investigate the impact of the order of the differencing operator. Minimizing Akaike’s information criterion we search for a possible best data-driven value of the differencing order. Theoretical derivations are established for the normal model and provide insights into a possible ‘optimal’ choice of the differencing order and its interrelation with other parameters. Applications of the selection procedure to non-normal models, such as Poisson models, are given. Simulation studies investigate the performance of the selection procedure and we illustrate its use on real data examples.
引用
收藏
页码:499 / 511
页数:12
相关论文
共 50 条
  • [21] Fast smoothing parameter separation in multidimensional generalized P-splines: the SAP algorithm
    María Xosé Rodríguez-Álvarez
    Dae-Jin Lee
    Thomas Kneib
    María Durbán
    Paul Eilers
    Statistics and Computing, 2015, 25 : 941 - 957
  • [22] Some identities and P-splines
    Dem'yanovich, Yu.K.
    Petrov, V.F.
    Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 2002, (02): : 5 - 9
  • [23] LIMITS OF HK,P-SPLINES
    CHUI, CK
    SMITH, PW
    WARD, JD
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (03) : 563 - 565
  • [24] Twenty years of P-splines
    Eilers, Paul H. C.
    Marx, Brian D.
    Durban, Maria
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2015, 39 (02) : 149 - 186
  • [25] Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models
    Lambert, Philippe
    Gressani, Oswaldo
    STATISTICAL MODELLING, 2023, 23 (5-6) : 409 - 423
  • [26] P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data
    Simon N. Wood
    Statistics and Computing, 2017, 27 : 985 - 989
  • [27] P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data
    Wood, Simon N.
    STATISTICS AND COMPUTING, 2017, 27 (04) : 985 - 989
  • [28] Spatially adaptive Bayesian penalized regression splines (P-splines) (vol 14, pg 378, 2005)
    Baladandayuthapani, V
    Mallick, B. K.
    Carroll, R. J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (02) : 515 - 515
  • [29] Variable selection using P-splines
    Gijbels, Irene
    Verhasselt, Anneleen
    Vrinssen, Inge
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2015, 7 (01): : 1 - 20
  • [30] Non-parametric regression on compositional covariates using Bayesian P-splines
    Francesca Bruno
    Fedele Greco
    Massimo Ventrucci
    Statistical Methods & Applications, 2016, 25 : 75 - 88