The Fourier Formula for Discontinuous Functions of Several Variables

被引:0
|
作者
A. N. Podkorytov
Mai Van Minh
机构
关键词
Fourier; Characteristic Function; Convex Compact; Discontinuous Function; Fourier Formula;
D O I
10.1023/B:JOTH.0000046213.25374.15
中图分类号
学科分类号
摘要
An analog of the classical Fourier formula for the characteristic function χΩ of a convex compact set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Omega \subset {\mathbb{R}}^m $$ \end{document} is considered: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\chi _\Omega (x_0 ) = {\mathop {\lim }\limits_{R \to {\text{ + }}\infty }} \int\limits_{RW} {\hat \chi _\Omega (y)e^{2\pi ix_0 \cdot y} dy,} $$ \end{document} where W is a polyhedral in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{R}}^m $$ \end{document}. Bibliography: 6 titles.
引用
收藏
页码:5018 / 5025
页数:7
相关论文
共 50 条