On Taylor’s formula for functions of several variables

被引:0
|
作者
Yu. G. Reshetnyak
机构
[1] Sobolev Institute of Mathematics,
来源
Siberian Mathematical Journal | 2013年 / 54卷
关键词
Taylor formula; rectifiable curve; remainder; functions of class ;
D O I
暂无
中图分类号
学科分类号
摘要
Elementary courses in mathematical analysis often mention some trick that is used to construct the remainder of Taylor’s formula in integral form. The trick is based on the fact that, differentiating the difference \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(x) - f(t) - f'(t)\frac{{(x - t)}} {{1!}} - \cdots - f^{(r - 1)} (t)\frac{{(x - t)^{r - 1} }} {{(r - 1)!}} $\end{document} between the function and its degree r − 1 Taylor polynomial at t with respect to t, we obtain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ - f^{(r)} (t)\frac{{(x - t)^{r - 1} }} {{(r - 1)!}} $\end{document}, so that all derivatives of orders below r disappear. The author observed previously a similar effect for functions of several variables. Differentiating the difference between the function and its degree r − 1 Taylor polynomial at t with respect to its components, we are left with terms involving only order r derivatives. We apply this fact here to estimate the remainder of Taylor’s formula for functions of several variables along a rectifiable curve.
引用
收藏
页码:566 / 573
页数:7
相关论文
共 50 条