Numerical Approximations for the Tempered Fractional Laplacian: Error Analysis and Applications

被引:0
|
作者
Siwei Duo
Yanzhi Zhang
机构
[1] University of South Carolina,Department of Mathematics
[2] Missouri University of Science and Technology,Department of Mathematics and Statistics
来源
关键词
Tempered integral fractional Laplacian; Finite difference methods; Error estimates; Fractional Allen–Cahn equation; Fractional Gray–Scott equations;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose an accurate finite difference method to discretize the d-dimensional (for d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 1$$\end{document}) tempered integral fractional Laplacian and apply it to study the tempered effects on the solution of problems arising in various applications. Compared to other existing methods, our method has higher accuracy and simpler implementation. Our numerical method has an accuracy of O(hε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h^\varepsilon )$$\end{document}, for u∈C0,α+ε(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in C^{0, \,\alpha + \varepsilon } (\bar{\Omega })$$\end{document} if α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha < 1$$\end{document} (or u∈C1,α-1+ε(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in C^{1, \,\alpha - 1 + \varepsilon } (\bar{\Omega })$$\end{document} if α≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 1$$\end{document}) with ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon > 0$$\end{document}, suggesting the minimum consistency conditions. The accuracy can be improved to O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h^2)$$\end{document}, for u∈C2,α+ε(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in C^{2, \,\alpha + \varepsilon } (\bar{\Omega })$$\end{document} if α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha < 1$$\end{document} (or u∈C3,α-1+ε(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in C^{3, \,\alpha - 1 + \varepsilon } (\bar{\Omega })$$\end{document} if α≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 1$$\end{document}). Numerical experiments confirm our analytical results and provide insights in solving the tempered fractional Poisson problem. It suggests that to achieve the second order of accuracy, our method only requires the solution u∈C1,1(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in C^{1,1}(\bar{\Omega })$$\end{document} for any α∈(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0, 2)$$\end{document}. Moreover, if the solution of tempered fractional Poisson problems satisfies u∈Cp,s(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in C^{p, s}(\bar{\Omega })$$\end{document} for p=0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p = 0, 1$$\end{document} and s∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0, 1]$$\end{document}, our method has the accuracy of O(hp+s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h^{p+s})$$\end{document}. Since our method yields a (multilevel) Toeplitz stiffness matrix, one can design fast algorithms via the fast Fourier transform for efficient simulations. Finally, we apply it together with fast algorithms to study the tempered effects on the solutions of various tempered fractional PDEs, including the Allen–Cahn equation and Gray–Scott equations.
引用
收藏
页码:569 / 593
页数:24
相关论文
共 50 条
  • [31] An a posteriori error estimator for the spectral fractional power of the Laplacian
    Bulle, Raphael
    Barrera, Olga
    Bordas, Stephane P. A.
    Chouly, Franz
    Hale, Jack S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 407
  • [32] Numerical Approximation for Fractional Diffusion Equation Forced by a Tempered Fractional Gaussian Noise
    Xing Liu
    Weihua Deng
    Journal of Scientific Computing, 2020, 84
  • [33] TEMPERED FRACTIONAL ORDER COMPARTMENT MODELS AND APPLICATIONS IN BIOLOGY
    Wang, Yejuan
    Zhang, Lijuan
    Yuan, Yuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, : 5297 - 5316
  • [34] New theories and applications of tempered fractional differential equations
    Obeidat, Nazek A.
    Bentil, Daniel E.
    NONLINEAR DYNAMICS, 2021, 105 (02) : 1689 - 1702
  • [35] Error estimates for Hermite and even-tempered Gaussian approximations in quantum chemistry
    Bachmayr, Markus
    Chen, Huajie
    Schneider, Reinhold
    NUMERISCHE MATHEMATIK, 2014, 128 (01) : 137 - 165
  • [36] Error estimates for Hermite and even-tempered Gaussian approximations in quantum chemistry
    Markus Bachmayr
    Huajie Chen
    Reinhold Schneider
    Numerische Mathematik, 2014, 128 : 137 - 165
  • [37] Numerical Approximation for Fractional Diffusion Equation Forced by a Tempered Fractional Gaussian Noise
    Liu, Xing
    Deng, Weihua
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (01)
  • [38] Optimal Error Estimates for Gegenbauer Approximations in Fractional Spaces
    Xie, Ruiyi
    Liu, Wenjie
    Wang, Haiyong
    Wu, Boying
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (02)
  • [39] Numerical approximations to a fractional Kawarada quenching problem
    Beauregard, Matthew A.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 349 : 14 - 22
  • [40] The maximum principles for fractional Laplacian equations and their applications
    Cheng, Tingzhi
    Huang, Genggeng
    Li, Congming
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (06)