Numerical Approximations for the Tempered Fractional Laplacian: Error Analysis and Applications

被引:0
|
作者
Siwei Duo
Yanzhi Zhang
机构
[1] University of South Carolina,Department of Mathematics
[2] Missouri University of Science and Technology,Department of Mathematics and Statistics
来源
关键词
Tempered integral fractional Laplacian; Finite difference methods; Error estimates; Fractional Allen–Cahn equation; Fractional Gray–Scott equations;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose an accurate finite difference method to discretize the d-dimensional (for d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 1$$\end{document}) tempered integral fractional Laplacian and apply it to study the tempered effects on the solution of problems arising in various applications. Compared to other existing methods, our method has higher accuracy and simpler implementation. Our numerical method has an accuracy of O(hε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h^\varepsilon )$$\end{document}, for u∈C0,α+ε(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in C^{0, \,\alpha + \varepsilon } (\bar{\Omega })$$\end{document} if α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha < 1$$\end{document} (or u∈C1,α-1+ε(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in C^{1, \,\alpha - 1 + \varepsilon } (\bar{\Omega })$$\end{document} if α≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 1$$\end{document}) with ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon > 0$$\end{document}, suggesting the minimum consistency conditions. The accuracy can be improved to O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h^2)$$\end{document}, for u∈C2,α+ε(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in C^{2, \,\alpha + \varepsilon } (\bar{\Omega })$$\end{document} if α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha < 1$$\end{document} (or u∈C3,α-1+ε(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in C^{3, \,\alpha - 1 + \varepsilon } (\bar{\Omega })$$\end{document} if α≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 1$$\end{document}). Numerical experiments confirm our analytical results and provide insights in solving the tempered fractional Poisson problem. It suggests that to achieve the second order of accuracy, our method only requires the solution u∈C1,1(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in C^{1,1}(\bar{\Omega })$$\end{document} for any α∈(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0, 2)$$\end{document}. Moreover, if the solution of tempered fractional Poisson problems satisfies u∈Cp,s(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in C^{p, s}(\bar{\Omega })$$\end{document} for p=0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p = 0, 1$$\end{document} and s∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0, 1]$$\end{document}, our method has the accuracy of O(hp+s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h^{p+s})$$\end{document}. Since our method yields a (multilevel) Toeplitz stiffness matrix, one can design fast algorithms via the fast Fourier transform for efficient simulations. Finally, we apply it together with fast algorithms to study the tempered effects on the solutions of various tempered fractional PDEs, including the Allen–Cahn equation and Gray–Scott equations.
引用
收藏
页码:569 / 593
页数:24
相关论文
共 50 条
  • [1] Numerical Approximations for the Tempered Fractional Laplacian: Error Analysis and Applications
    Duo, Siwei
    Zhang, Yanzhi
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 569 - 593
  • [2] Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian
    Jing Sun
    Daxin Nie
    Weihua Deng
    BIT Numerical Mathematics, 2021, 61 : 1421 - 1452
  • [3] Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian
    Sun, Jing
    Nie, Daxin
    Deng, Weihua
    BIT NUMERICAL MATHEMATICS, 2021, 61 (04) : 1421 - 1452
  • [4] Numerical approximations of fractional derivatives with applications
    Pooseh, Shakoor
    Almeida, Ricardo
    Torres, Delfim F. M.
    ASIAN JOURNAL OF CONTROL, 2013, 15 (03) : 698 - 712
  • [5] Finite Difference Schemes for the Tempered Fractional Laplacian
    Zhang, Zhijiang
    Deng, Weihua
    Fan, Hongtao
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (02): : 492 - 516
  • [6] Precise error bounds for numerical approximations of fractional HJB equations
    Chowdhury, Indranil
    Jakobsen, Espen R.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [7] A RIESZ BASIS GALERKIN METHOD FOR THE TEMPERED FRACTIONAL LAPLACIAN
    Zhang, Zhijiang
    Deng, Weihua
    Karniadakis, George Em
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (05) : 3010 - 3039
  • [8] Analysis and numerical approximation of tempered fractional calculus of variations problems
    Almeida, Ricardo
    Luisa Morgado, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 361 : 1 - 12
  • [9] A posteriori error analysis for numerical approximations of Friedrichs systems
    P. Houston
    J.A. Mackenzie
    E. Süli
    G. Warnecke
    Numerische Mathematik, 1999, 82 : 433 - 470
  • [10] A posteriori error analysis for numerical approximations of Friedrichs systems
    Houston, P
    Mackenzie, JA
    Süli, E
    Warnecke, G
    NUMERISCHE MATHEMATIK, 1999, 82 (03) : 433 - 470