Octagon with finite bridge: free fermions and determinant identities

被引:0
|
作者
Ivan Kostov
Valentina B. Petkova
机构
[1] Institut de physique théorique,Université Paris
[2] Bulgarian Academy of Sciences,Saclay, CNRS, CEA
关键词
AdS-CFT Correspondence; Integrable Field Theories; Supersymmetric Gauge Theory; 1/N Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We continue the study of the octagon form factor which helps to evaluate a class of four-point correlation functions in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM theory. The octagon is characterised, besides the kinematical parameters, by a “bridge” of ℓ propagators connecting two nonadjacent operators. In this paper we construct an operator representation of the octagon with finite bridge as an expectation value in the Fock space of free complex fermions. The bridge ℓ appears as the level of filling of the Dirac sea. We obtain determinant identities relating octagons with different bridges, which we derive from the expression of the octagon in terms of discrete fermionic oscillators. The derivation is based on the existence of a previously conjectured similarity transformation, which we find here explicitly.
引用
收藏
相关论文
共 50 条
  • [21] Functional approach without path integrals to finite temperature free fermions
    de Souza, SM
    Santos, OR
    Thomaz, MT
    BRAZILIAN JOURNAL OF PHYSICS, 1999, 29 (03) : 564 - 573
  • [22] Finite-Temperature Free Fermions and the Kardar-Parisi-Zhang Equation at Finite Time
    Dean, David S.
    Le Doussal, Pierre
    Majumdar, Satya N.
    Schehr, Gregory
    PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [23] CHERN SIMONS THEORY, EXACTLY SOLVABLE MODELS AND FREE FERMIONS AT FINITE TEMPERATURE
    Tierz, Miguel
    MODERN PHYSICS LETTERS A, 2009, 24 (39) : 3157 - 3171
  • [24] THE DETERMINANT SYSTEM FOR THE FREE DEMORGAN ALGEBRA OVER A FINITE ORDERED SET
    FIGALLO, A
    MONTEIRO, L
    JOURNAL OF SYMBOLIC LOGIC, 1981, 46 (01) : 185 - 185
  • [25] Algebras with polynomial identities and computing the determinant
    Chien, Steve
    Sinclair, Alistair
    SIAM JOURNAL ON COMPUTING, 2007, 37 (01) : 252 - 266
  • [26] PARTIAL FRACTION DECOMPOSITION AND DETERMINANT IDENTITIES
    Chu, Wenchang
    Wang, Xiaoyuan
    Zhang, Wenlong
    ARS COMBINATORIA, 2013, 109 : 71 - 86
  • [27] Algebras with polynomial identities and computing the determinant
    Chien, S
    Sinclair, A
    45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, : 352 - 361
  • [28] Determinant Identities and the Geometry of Lines and Circles
    Anghel, Nicolae
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (02): : 37 - 49
  • [29] ON MATRIX AND DETERMINANT IDENTITIES FOR COMPOSITE FUNCTIONS
    Wang, Xinghua
    Xu, Aimin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2011, 29 (01) : 16 - 25
  • [30] Finite-sample bias in free energy bridge estimators
    Radak, Brian K.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (03):