Determining Hilbert modular forms by central values of Rankin–Selberg convolutions: the weight aspect

被引:0
|
作者
Alia Hamieh
Naomi Tanabe
机构
[1] University of Lethbridge,Department of Mathematics and Computer Science
[2] Dartmouth College,Department of Mathematics
来源
The Ramanujan Journal | 2018年 / 45卷
关键词
Hilbert modular forms; Rankin–Selberg convolutions; Special values of ; -functions; Primary 11F41; 11F67; Secondary 11F30; 11F11; 11F12; 11N75;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to prove that a primitive Hilbert cusp form g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{g}$$\end{document} is uniquely determined by the central values of the Rankin–Selberg L-functions L(f⊗g,12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(\mathbf{f}\otimes \mathbf{g}, \frac{1}{2})$$\end{document}, where f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{f}$$\end{document} runs through all primitive Hilbert cusp forms of weight k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} for infinitely many weight vectors k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. This result is a generalization of the work of Ganguly et al. (Math Ann 345:843–857, 2009) to the setting of totally real number fields, and it is a weight aspect analogue of our previous work (Hamieh and Tanabe in Trans Am Math Soc, arXiv:1609.07209, 2016).
引用
收藏
页码:615 / 637
页数:22
相关论文
共 50 条