Maximal function characterizations for Hardy spaces associated with nonnegative self-adjoint operators on spaces of homogeneous type

被引:0
|
作者
Liang Song
Lixin Yan
机构
[1] Sun Yat-sen University,Department of Mathematics
来源
Journal of Evolution Equations | 2018年 / 18卷
关键词
Hardy space; Nonnegative self-adjoint operator; Atomic decomposition; The nontangential and radial maximal functions; Spaces of homogeneous type; Primary 42B30; Secondary 42B35; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a metric measure space with a doubling measure and L be a nonnegative self-adjoint operator acting on L2(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(X)$$\end{document}. Assume that L generates an analytic semigroup e-tL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{-tL}$$\end{document} whose kernels pt(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_t(x,y)$$\end{document} satisfy Gaussian upper bounds but without any assumptions on the regularity of space variables x and y. In this article, we continue a study in Song and Yan (Adv Math 287:463–484, 2016) to give an atomic decomposition for the Hardy spaces HL,maxp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^p_{L,\mathrm{max}}(X)$$\end{document} in terms of the nontangential maximal function associated with the heat semigroup of L, and hence, we establish characterizations of Hardy spaces associated with an operator L, via an atomic decomposition or the nontangential maximal function. We also obtain an equivalence of HL,maxp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^p_{L, \mathrm{max}}(X)$$\end{document} in terms of the radial maximal function.
引用
收藏
页码:221 / 243
页数:22
相关论文
共 50 条
  • [31] Characterizations of Ordered Self-adjoint Operator Spaces
    Travis B. Russell
    Complex Analysis and Operator Theory, 2023, 17
  • [32] Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type
    Han, Yanchang
    Han, Yongsheng
    Li, Ji
    Tan, Chaoqiang
    POTENTIAL ANALYSIS, 2018, 49 (02) : 247 - 265
  • [33] Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type
    Yanchang Han
    Yongsheng Han
    Ji Li
    Chaoqiang Tan
    Potential Analysis, 2018, 49 : 247 - 265
  • [34] Spectral points of type π+ and π- of self-adjoint operators in Krein spaces
    Azizov, TY
    Jonas, P
    Trunk, C
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 226 (01) : 114 - 137
  • [35] Hardy Spaces Associated with Non-negative Self-adjoint Operators and Ball Quasi-Banach Function Spaces on Doubling Metric Measure Spaces and Their Applications
    Lin, Xiaosheng
    Yang, Dachun
    Yang, Sibei
    Yuan, Wen
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024,
  • [36] Spectrum of definite type of self-adjoint operators in Krein spaces
    Langer, H
    Langer, M
    Markus, A
    Tretter, C
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (02): : 115 - 136
  • [37] Non-tangential Maximal Function Characterizations of Hardy Spaces Associated with Degenerate Elliptic Operators
    Zhang, Junqiang
    Cao, Jun
    Jiang, Renjin
    Yang, Dachun
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (05): : 1161 - 1200
  • [38] Isometries of the spaces of self-adjoint traceless operators
    Nagy, Gergoe
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 484 : 1 - 12
  • [39] Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schrodinger operators
    Yang, Dachun
    Yang, Dongyong
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (05) : 1203 - 1232
  • [40] Maximal function characterizations of Hardy spaces associated with Schrödinger operators on nilpotent Lie groups
    Renjin Jiang
    Xiaojuan Jiang
    Dachun Yang
    Revista Matemática Complutense, 2011, 24 : 251 - 275