Maximal function characterizations for Hardy spaces associated with nonnegative self-adjoint operators on spaces of homogeneous type

被引:0
|
作者
Liang Song
Lixin Yan
机构
[1] Sun Yat-sen University,Department of Mathematics
来源
Journal of Evolution Equations | 2018年 / 18卷
关键词
Hardy space; Nonnegative self-adjoint operator; Atomic decomposition; The nontangential and radial maximal functions; Spaces of homogeneous type; Primary 42B30; Secondary 42B35; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a metric measure space with a doubling measure and L be a nonnegative self-adjoint operator acting on L2(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(X)$$\end{document}. Assume that L generates an analytic semigroup e-tL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{-tL}$$\end{document} whose kernels pt(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_t(x,y)$$\end{document} satisfy Gaussian upper bounds but without any assumptions on the regularity of space variables x and y. In this article, we continue a study in Song and Yan (Adv Math 287:463–484, 2016) to give an atomic decomposition for the Hardy spaces HL,maxp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^p_{L,\mathrm{max}}(X)$$\end{document} in terms of the nontangential maximal function associated with the heat semigroup of L, and hence, we establish characterizations of Hardy spaces associated with an operator L, via an atomic decomposition or the nontangential maximal function. We also obtain an equivalence of HL,maxp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^p_{L, \mathrm{max}}(X)$$\end{document} in terms of the radial maximal function.
引用
收藏
页码:221 / 243
页数:22
相关论文
共 50 条