Rates in Approximations to Ruin Probabilities for Heavy-Tailed Distributions

被引:0
|
作者
Thomas Mikosch
Alexander Nagaev
机构
[1] University of Copenhagen,Laboratory of Actuarial Mathematics
[2] Copernicus University,Faculty of Mathematics and Informatics
关键词
heavy tails; total claim amount; Pollaczek-Khintchine formula; Cramér–Lundberg model; ruin probability; convergence rates;
D O I
10.1023/A:1012237524316
中图分类号
学科分类号
摘要
A well known result by Embrechts and Veraverbeke [3] says that, for subexponential distribution functions F(x), the tail of the compound sum distribution function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Sigma _{n = 1}^\infty p_n F^{n*} (x)$$ \end{document} is approximated by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(1 - F(x))\Sigma _{n = 1}^\infty np_n $$ \end{document} as x → ∞. We show that the rate of convergence in this result can be arbitrarily slow. On the other hand, if F satisfies some smoothness condition (for example if F is an integrated tail distribution function) then the rate cannot be worse than O(x-1).
引用
收藏
页码:67 / 78
页数:11
相关论文
共 50 条
  • [41] The Weighted Bootstrap Mean for Heavy-Tailed Distributions
    E. del Barrio
    C. Matrán
    [J]. Journal of Theoretical Probability, 2000, 13 : 547 - 569
  • [42] GAMMA SHAPE MIXTURES FOR HEAVY-TAILED DISTRIBUTIONS
    Venturini, Sergio
    Dominici, Francesca
    Parmigiani, Giovanni
    [J]. ANNALS OF APPLIED STATISTICS, 2008, 2 (02): : 756 - 776
  • [43] Inverse Laplace transform for heavy-tailed distributions
    Tagliani, A
    Velásquez, Y
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 150 (02) : 337 - 345
  • [44] Nonparametric elicitation for heavy-tailed prior distributions
    Gosling, John Paul
    Oakley, Jeremy E.
    O'Hagan, Anthony
    [J]. BAYESIAN ANALYSIS, 2007, 2 (04): : 693 - 718
  • [46] Performance analysis with truncated heavy-tailed distributions
    Asmussen, S
    Pihlsgård, M
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2005, 7 (04) : 439 - 457
  • [47] Taylor's law and heavy-tailed distributions
    Lindquist, W. Brent
    Rachev, Svetlozar T.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (50)
  • [48] Testing the variance of symmetric heavy-tailed distributions
    Lee, SJ
    Sa, P
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1996, 56 (01) : 39 - 52
  • [49] CHARACTERIZING HEAVY-TAILED DISTRIBUTIONS INDUCED BY RETRANSMISSIONS
    Jelenkovic, Predrag R.
    Tan, Jian
    [J]. ADVANCES IN APPLIED PROBABILITY, 2013, 45 (01) : 106 - 138
  • [50] Performance Analysis with Truncated Heavy-Tailed Distributions
    Søren Asmussen
    Mats Pihlsgård
    [J]. Methodology and Computing in Applied Probability, 2005, 7 : 439 - 457