Rates in Approximations to Ruin Probabilities for Heavy-Tailed Distributions

被引:0
|
作者
Thomas Mikosch
Alexander Nagaev
机构
[1] University of Copenhagen,Laboratory of Actuarial Mathematics
[2] Copernicus University,Faculty of Mathematics and Informatics
关键词
heavy tails; total claim amount; Pollaczek-Khintchine formula; Cramér–Lundberg model; ruin probability; convergence rates;
D O I
10.1023/A:1012237524316
中图分类号
学科分类号
摘要
A well known result by Embrechts and Veraverbeke [3] says that, for subexponential distribution functions F(x), the tail of the compound sum distribution function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Sigma _{n = 1}^\infty p_n F^{n*} (x)$$ \end{document} is approximated by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(1 - F(x))\Sigma _{n = 1}^\infty np_n $$ \end{document} as x → ∞. We show that the rate of convergence in this result can be arbitrarily slow. On the other hand, if F satisfies some smoothness condition (for example if F is an integrated tail distribution function) then the rate cannot be worse than O(x-1).
引用
收藏
页码:67 / 78
页数:11
相关论文
共 50 条