Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers

被引:0
|
作者
Tapani Matala-Aho
Marc Prévost
机构
[1] Matemaattisten tieteiden laitos,Laboratoire de Mathématiques Pures et Appliquées
[2] Université du Littoral,undefined
来源
The Ramanujan Journal | 2006年 / 11卷
关键词
Irrationality measure; Padé approximation; Cyclotomic polynomial; -series;
D O I
暂无
中图分类号
学科分类号
摘要
Irrationality measures are given for the values of the series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{n=0}^{\infty} t^{n}/W_{an+b}$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b\in\mathbb{Z}^+, 1\le b\le a, (a,b)=1$$\end{document} and Wn is a rational valued Fibonacci or Lucas form, satisfying a second order linear recurrence. In particular, we prove irrationality of all the numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sum_{n=0}^\infty \frac{1}{f_{an+b}},\quad \sum_{n=0}^\infty \frac{1}{l_{an+b}}, $$\end{document} where fn and ln are the Fibonacci and Lucas numbers, respectively.
引用
收藏
页码:249 / 261
页数:12
相关论文
共 50 条
  • [1] Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers
    Matala-Aho, Tapani
    Prevost, Marc
    [J]. RAMANUJAN JOURNAL, 2006, 11 (02): : 249 - 261
  • [2] ON SUMS OF RECIPROCALS OF FIBONACCI AND LUCAS-NUMBERS
    JENNINGS, D
    [J]. FIBONACCI QUARTERLY, 1994, 32 (01): : 18 - 21
  • [3] Inequalities Involving Sums of Reciprocals of Fibonacci and Lucas Numbers
    Higuita, Robinson
    Davenport, Kenneth B.
    Fleischman, Dmitry
    Kwong, Harris
    Ohtsuka, Hideyuki
    Batinetu-Giurgiu, D. M.
    Stanciu, Neculai
    [J]. FIBONACCI QUARTERLY, 2015, 53 (03): : 282 - 283
  • [4] Linear independence results for sums of reciprocals of Fibonacci and Lucas numbers
    D. Duverney
    Y. Suzuki
    Y. Tachiya
    [J]. Acta Mathematica Hungarica, 2020, 162 : 375 - 392
  • [5] LINEAR INDEPENDENCE RESULTS FOR SUMS OF RECIPROCALS OF FIBONACCI AND LUCAS NUMBERS
    Duverney, D.
    Suzuki, Y.
    Tachiya, Y.
    [J]. ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 375 - 392
  • [6] Sums of reciprocals of Fibonacci numbers
    Herrmann, E
    [J]. FIBONACCI QUARTERLY, 2004, 42 (04): : 379 - 380
  • [7] The sums of the reciprocals of Fibonacci polynomials and Lucas polynomials
    Wu, Zhengang
    Zhang, Wenpeng
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [8] The sums of the reciprocals of Fibonacci polynomials and Lucas polynomials
    Zhengang Wu
    Wenpeng Zhang
    [J]. Journal of Inequalities and Applications, 2012
  • [9] Sums of Reciprocals of Squares of Fibonacci Numbers
    Ohtsuka, Hideyuki
    [J]. FIBONACCI QUARTERLY, 2012, 50 (03): : 284 - 284
  • [10] Transcendental series of reciprocals of Fibonacci and Lucas numbers
    Nguyen, Khoa Dang
    [J]. ALGEBRA & NUMBER THEORY, 2022, 16 (07) : 1627 - 1654