Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers

被引:9
|
作者
Matala-Aho, Tapani
Prevost, Marc
机构
[1] Matemaattisten Tieteiden Laitos, Oulu, Finland
[2] Univ Littoral, Lab Math Pures & Appl, F-62228 Calais, France
来源
RAMANUJAN JOURNAL | 2006年 / 11卷 / 02期
关键词
irrationality measure; Pade approximation; cyclotomic polynomial; q-series;
D O I
10.1007/s11139-006-6511-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Irrationality measures are given for the values of the series Sigma(infinity)(n=0) t(n)/Wan+b, where a, b is an element of Z(+), 1 <= b <= a, (a, b) = 1 and W-n is a rational valued Fibonacci or Lucas form, satisfying a second order linear recurrence. In particular, we prove irrationality of all the numbers [GRAPHICS] where f(n) and l(n) are the Fibonacci and Lucas numbers, respectively.
引用
收藏
页码:249 / 261
页数:13
相关论文
共 50 条
  • [1] Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers
    Tapani Matala-Aho
    Marc Prévost
    [J]. The Ramanujan Journal, 2006, 11 : 249 - 261
  • [2] ON SUMS OF RECIPROCALS OF FIBONACCI AND LUCAS-NUMBERS
    JENNINGS, D
    [J]. FIBONACCI QUARTERLY, 1994, 32 (01): : 18 - 21
  • [3] Inequalities Involving Sums of Reciprocals of Fibonacci and Lucas Numbers
    Higuita, Robinson
    Davenport, Kenneth B.
    Fleischman, Dmitry
    Kwong, Harris
    Ohtsuka, Hideyuki
    Batinetu-Giurgiu, D. M.
    Stanciu, Neculai
    [J]. FIBONACCI QUARTERLY, 2015, 53 (03): : 282 - 283
  • [4] Linear independence results for sums of reciprocals of Fibonacci and Lucas numbers
    D. Duverney
    Y. Suzuki
    Y. Tachiya
    [J]. Acta Mathematica Hungarica, 2020, 162 : 375 - 392
  • [5] LINEAR INDEPENDENCE RESULTS FOR SUMS OF RECIPROCALS OF FIBONACCI AND LUCAS NUMBERS
    Duverney, D.
    Suzuki, Y.
    Tachiya, Y.
    [J]. ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 375 - 392
  • [6] Sums of reciprocals of Fibonacci numbers
    Herrmann, E
    [J]. FIBONACCI QUARTERLY, 2004, 42 (04): : 379 - 380
  • [7] The sums of the reciprocals of Fibonacci polynomials and Lucas polynomials
    Wu, Zhengang
    Zhang, Wenpeng
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [8] The sums of the reciprocals of Fibonacci polynomials and Lucas polynomials
    Zhengang Wu
    Wenpeng Zhang
    [J]. Journal of Inequalities and Applications, 2012
  • [9] Sums of Reciprocals of Squares of Fibonacci Numbers
    Ohtsuka, Hideyuki
    [J]. FIBONACCI QUARTERLY, 2012, 50 (03): : 284 - 284
  • [10] Transcendental series of reciprocals of Fibonacci and Lucas numbers
    Nguyen, Khoa Dang
    [J]. ALGEBRA & NUMBER THEORY, 2022, 16 (07) : 1627 - 1654