Development of 100Mo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{100}\hbox {Mo}$$\end{document}-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search

被引:0
|
作者
E. Armengaud
C. Augier
A. S. Barabash
J. W. Beeman
T. B. Bekker
F. Bellini
A. Benoît
L. Bergé
T. Bergmann
J. Billard
R. S. Boiko
A. Broniatowski
V. Brudanin
P. Camus
S. Capelli
L. Cardani
N. Casali
A. Cazes
M. Chapellier
F. Charlieux
D. M. Chernyak
M. de Combarieu
N. Coron
F. A. Danevich
I. Dafinei
M. De Jesus
L. Devoyon
S. Di Domizio
L. Dumoulin
K. Eitel
C. Enss
F. Ferroni
A. Fleischmann
N. Foerster
J. Gascon
L. Gastaldo
L. Gironi
A. Giuliani
V. D. Grigorieva
M. Gros
L. Hehn
S. Hervé
V. Humbert
N. V. Ivannikova
I. M. Ivanov
Y. Jin
A. Juillard
M. Kleifges
V. V. Kobychev
S. I. Konovalov
机构
[1] Université Paris-Saclay,IRFU, CEA
[2] Univ Lyon,Dipartimento di Fisica
[3] Université Lyon 1,Laboratory of Nuclear Problems
[4] CNRS/IN2P3,Dipartimento di Fisica
[5] IPN-Lyon,IRAMIS, CEA
[6] National Research Centre Kurchatov Institute,IAS, CNRS
[7] Institute of Theoretical and Experimental Physics,Orphée, CEA
[8] Lawrence Berkeley National Laboratory,Dipartimento di Fisica
[9] V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the RAS,Kirchhoff Institute for Physics
[10] Sapienza Università di Roma,DISAT
[11] INFN,Department of Physics
[12] Sezione di Roma,Department of Physics and Astronomy
[13] CNRS-Néel,CEA, LIST, Laboratoire National Henri Becquerel (LNE
[14] CSNSM,LNHB)
[15] Univ. Paris-Sud,Department of Physics and Astronomy
[16] CNRS/IN2P3,ICMCB, CNRS
[17] Université Paris-Saclay, Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study
[18] Karlsruhe Institute of Technology,undefined
[19] Institut für Prozessdatenverarbeitung und Elektronik,undefined
[20] Institute for Nuclear Research,undefined
[21] Karlsruhe Institute of Technology,undefined
[22] Institut für Experimentelle Teilchenphysik,undefined
[23] JINR,undefined
[24] Università di Milano Bicocca,undefined
[25] INFN,undefined
[26] Sezione di Milano Bicocca,undefined
[27] Université Paris-Saclay,undefined
[28] Université Paris-Sud,undefined
[29] Université Paris-Saclay,undefined
[30] Università di Genova,undefined
[31] INFN Sezione di Genova,undefined
[32] Karlsruhe Institute of Technology,undefined
[33] Institut für Kernphysik,undefined
[34] Heidelberg University,undefined
[35] Università dell’Insubria,undefined
[36] Nikolaev Institute of Inorganic Chemistry,undefined
[37] Laboratoire de Photonique et de Nanostructures,undefined
[38] CNRS,undefined
[39] University of Oxford,undefined
[40] University of Sheffield,undefined
[41] INFN,undefined
[42] Laboratori Nazionali del Gran Sasso,undefined
[43] CEA-Saclay,undefined
[44] INFN,undefined
[45] Gran Sasso Science Institute,undefined
[46] INFN,undefined
[47] Laboratori Nazionali di Frascati,undefined
[48] University of South Carolina,undefined
[49] Université de Bordeaux,undefined
[50] The University of Tokyo,undefined
来源
The European Physical Journal C | 2017年 / 77卷 / 11期
关键词
D O I
10.1140/epjc/s10052-017-5343-2
中图分类号
学科分类号
摘要
This paper reports on the development of a technology involving 100Mo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{100}\hbox {Mo}$$\end{document}-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass (∼1kg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 1~\hbox {kg}$$\end{document}), high optical quality, radiopure 100Mo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{100}\hbox {Mo}$$\end{document}-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2–0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of 100Mo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{100}\hbox {Mo}$$\end{document} (3034 keV) is 4–6 keV FWHM. The rejection of the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-induced dominant background above 2.6 MeV is better than 8σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\sigma $$\end{document}. Less than 10μBq/kg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10~\upmu \hbox {Bq/kg}$$\end{document} activity of 232Th(228Th)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{232}\hbox {Th}\, (^{228}\hbox {Th})$$\end{document} and 226Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{226}\hbox {Ra}$$\end{document} in the crystals is ensured by boule recrystallization. The potential of 100Mo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{100}\hbox {Mo}$$\end{document}-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10kg×d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10~\hbox {kg}\times \hbox {d}$$\end{document} exposure: the two neutrino double-beta decay half-life of 100Mo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{100}\hbox {Mo}$$\end{document} has been measured with the up-to-date highest accuracy as T1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{1/2}$$\end{document} = [6.90 ± 0.15(stat.) ± 0.37(syst.)] ×1018years\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times ~10^{18}~\hbox {years}$$\end{document}. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of 100Mo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{100}\hbox {Mo}$$\end{document}.
引用
收藏
相关论文
共 50 条