Distribution of values of quadratic forms at integral points

被引:0
|
作者
P. Buterus
F. Götze
T. Hille
G. Margulis
机构
[1] University of Göttingen,Department of Mathematics
[2] University of Bielefeld,Faculty of Mathematics
[3] Northwestern University,Department of Mathematics
[4] Yale University,Department of Mathematics
[5] New Haven,undefined
来源
Inventiones mathematicae | 2022年 / 227卷
关键词
11P21; 11D75;
D O I
暂无
中图分类号
学科分类号
摘要
The number of lattice points in d-dimensional hyperbolic or elliptic shells {m:a<Q[m]<b}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{m : a<Q[m]<b\}$$\end{document}, which are restricted to rescaled and growing domains rΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\,\Omega $$\end{document}, is approximated by the volume. An effective error bound of order o(rd-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(r^{d-2})$$\end{document} for this approximation is proved based on Diophantine approximation properties of the quadratic form Q. These results allow to show effective variants of previous non-effective results in the quantitative Oppenheim problem and extend known effective results in dimension d≥9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 9$$\end{document} to dimension d≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 5$$\end{document}. They apply to wide shells when b-a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b-a$$\end{document} is growing with r and to positive definite forms Q. For indefinite forms they provide explicit bounds (depending on the signature or Diophantine properties of Q) for the size of non-zero integral points m in dimension d≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 5$$\end{document} solving the Diophantine inequality |Q[m]|<ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|Q[m] |< \varepsilon $$\end{document} and provide error bounds comparable with those for positive forms up to powers of logr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log r$$\end{document}.
引用
收藏
页码:857 / 961
页数:104
相关论文
共 50 条
  • [31] On values of isotropic quadratic forms
    Choudhuri, Manoj
    Makadiya, Prashant J.
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (01):
  • [32] Estimates for lattice points of quadratic forms with integral coefficients modulo a prime number square
    Ali H Hakami
    [J]. Journal of Inequalities and Applications, 2014
  • [33] Estimates for lattice points of quadratic forms with integral coefficients modulo a prime number square
    Hakami, Ali H.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [34] On orbits of SL(2,Z)+ and values of binary quadratic forms on positive integral pairs
    Dani, SG
    Nogueira, A
    [J]. JOURNAL OF NUMBER THEORY, 2002, 95 (02) : 313 - 328
  • [35] ON DISTRIBUTION OF QUADRATIC FORMS
    SEARLE, SR
    URQUHART, NS
    [J]. BIOMETRICS, 1966, 22 (03) : 649 - &
  • [36] CONCENTRATION OF POINTS ON MODULAR QUADRATIC FORMS
    Zumalacarregui, Ana
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (07) : 1835 - 1839
  • [37] Euclidean quadratic forms and ADC forms II: integral forms
    Clark, Pete L.
    Jagy, William C.
    [J]. ACTA ARITHMETICA, 2014, 164 (03) : 265 - 308
  • [38] Integral matrices as diagonal quadratic forms
    Lee, Jungin
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 742 - 747
  • [39] Extensions of representations of integral quadratic forms
    Wai Kiu Chan
    Byeong Moon Kim
    Myung-Hwan Kim
    Byeong-Kweon Oh
    [J]. The Ramanujan Journal, 2008, 17 : 145 - 153
  • [40] Integral quadratic forms and Dirichlet series
    van Asch, B.
    van der Blij, F.
    [J]. RAMANUJAN JOURNAL, 2010, 22 (01): : 1 - 10